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 Computational Methods for Dynamic Graphs

 Corinna CORTES, Daryl PREGIBON, and Chris VOLINSKY

 This article considers problems that can be characterized by large dynamic graphs.

 Communication networks provide the prototypical example of such problems where nodes

 in the graph are network IDs and the edges represent communication between pairs of

 network IDs. In such graphs, nodes and edges appear and disappear through time so that

 methods that apply to static graphs are not sufficient. Our definition of a dynamic graph

 is procedural. We introduce a data structure and an updating scheme that captures, in an

 approximate sense, the graph and its evolution through time. The data structure arises from

 a bottom-up representation of the large graph as the union of small subgraphs centered

 on every node. These subgraphs are interesting in their own right and can be enhanced to

 form what we call communities of interest (COI). We discuss an application in the area of
 telecommunications fraud detection to help motivate the ideas.

 Key Words: Approximate subgraphs; Exponential averaging; Fraud detection; Transac-
 tional data streams.

 1. INTRODUCTION

 Transactional data consist of records of interactions between pairs of entities occurring

 over time. For example, a sequence of credit card transactions consists of purchases of

 retail goods by individual consumers from individual merchants. Transactional data can be

 represented by a graph where the nodes represent the transactors and the edges represent

 the interactions between pairs of transactors. Viewed in this way, interesting new questions

 can be posed concerning the connectivity of nodes, the presence of atomic subgraphs, or

 whether the graph structure leads to the identification and characterization of "interesting"

 nodes. For example, Kleinberg (1999) introduced the notion of "hubs" and "authorities"

 as interesting nodes on the Internet. The data used by Kleinberg differ significantly from

 the data we consider in that he uses static links to induce a graph over Web pages. We use

 actual network traffic, as captured by interactions between pairs of transactors, to define our
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 COMPUTATIONAL METHODS FOR DYNAMIC GRAPHS 951

 graph. Because nodes and edges appear and disappear through time, the graph we consider

 is dynamic.
 There are many challenging issues that arise for dynamic graphs and we have used a

 specific application to focus our research, namely the graph induced by calls carried on a

 large telecommunications network. This application is interesting, both because of its size

 (i.e., hundreds of millions of nodes and edges) and its rate of change (i.e., hundreds of

 thousands of new nodes and edges each day). Like all networks, it is also diverse in the

 sense that some nodes are relatively inactive while others are superactive.

 The article is organized as follows. Section 2 illustrates characteristics of large dynamic

 graphs using network traffic from a specific telecommunications service. Section 3 intro-

 duces the definition of a dynamic graph that we adopt and discusses the computational and

 statistical features of various altematives. Section 4 describes an approximation to facilitate

 both interpretation and large scale computations, including updating and maintaining the

 dynamic graph over time. Section 5 introduces an example that illustrates how these sub-

 graphs are used in practice. Section 6 expands on these notions and considers approximate

 subgraphs centered on nodes that can be further enhanced or pruned to define communities

 of interest. Section 7 discusses related work in and outside the data mining community. The

 final section summarizes the findings and discusses future work.

 2. MOTIVATION

 The large graphs that we are concerned with are defined from records of transactions

 on large telecommunications networks. We believe that characteristics of such graphs are

 shared by other large financial and data networks, including the Internet. These character-

 istics include a large number of nodes and edges, sparse connectivity, and dynamics that

 have stable macro effects but substantial variation in micro effects. This section illustrates

 these characteristics using telecommunications traffic. Our data consist of hundreds of mil-

 lions of nodes, each of which represents an account. We observe several billion edges on

 this network in an average week, presenting themselves in a continuous data stream. This

 section uses plots and tables to present the salient features of this transaction stream.

 2.1 ADDITION AND ATTRITION OF NODES

 Nodes in dynamic graphs appear and disappear through time. Figure 1 shows the

 addition and attrition of nodes throughout the study period. By "node addition" we mean

 the number of new nodes that we see in week i that we haven't yet seen through week i - 1.

 By "node attrition" we mean the number of nodes that we see for the last time in week i. The

 service we consider has hundreds of millions of nodes and billions of edges. On any given

 day, tens of millions of these nodes are active and responsible for hundreds of millions of

 transactions. The exact numbers are considered proprietary and we illustrate the volatility

 of the service using relative change. Figure 1 attempts to capture this volatility by showing

 the addition and attrition rates of nodes on the network. The figure illustrates that after a
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 Figure 1. Node addition and attrition through time. The data correspond to 25 successive weeks of network activity.

 The upper curve shows the cumulative percent of unique nodes seen each study week that had not been seen before.

 The lower curve shows the cumulative percent of nodes seen for the last time in each study week. Steady state is

 reached after about 18 weeks and lines are fitted to the remaining last and first 7 weeks, respectively. The slopes

 correspond to addition and attritrion rates of just under 1%. This means that 1% of the nodes we observe each

 week had not been observed previously, and another 1% will never be seen again.

 steady state is reached, roughly after 18 weeks of observation, new nodes are observed (for

 the first time) at a rate of slightly less than 1% per week. Similarly, discounting the end

 effects of the observation period, old nodes are observed (for the last time) at the same rate.

 The parallel lines fitted to the end/start of these sequences illustrate that the service is stable

 despite there being considerable turnover of transactors each and every week.

 2.2 ADDITION AND ATTRITION OF EDGES

 We illustrate the addition and attrition of edges by following a random sample of 1,000

 residential accounts over a 180-day period. This period was broken up into six 30-day

 slices, and the edges from the first month were tracked to see if they appeared in subsequent

 months.

 The results in Table 1 show that edges seen in one month often do not show up again. Of

 all the edges observed in the reference month, only 37.9% of them are seen the following

 month, and the number seen steadily decreases for subsequent months. The cumulative

 results show aggregation of all the months. By the end of the study period, only 53.7%

 of the edges from the first month have been observed again, and the leveling off of the

 cumulative numbers indicate that there will be a reasonably large percent of edges that will
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 COMPUTATIONAL METHODS FOR DYNAMIC GRAPHS 953

 Table 1. Edge Attrition for Activity on 1,000 Residential Accounts Over a Six-Month Period. Month 1
 is a "reference month" for which we look for those edges in subsequent months. For each
 subsequent month the table shows how many of the edges are observed again. The column
 marked Cumulative aggregates the subsequent months to show how many of the edges we
 have seen overall.

 Month Old edges seen Percent Cumulative percent

 1 5995 100
 2 2272 37.9 37.9
 3 2001 33.4 46.5
 4 1734 28.9 50.0
 5 1585 26.4 52.3
 6 1376 23.0 53.7

 never be seen again.

 Table 2 shows edge addition effects on the same sample over the same period. This

 time for each month, we note how many edges are seen for the first time. In addition, we

 show the total number of unique edges seen up to and including that month. Note that after

 five months, we have observed nearly four times more edges than we observed in the first

 month.

 2.3 CONNECTIVITY

 A fully connected graph with N nodes has M = N(N - 1) directed edges. We

 explore connectivity using the sample of 1,000 residential accounts. Figure 2(a) displays

 the cumulative distribution of in-degree and out-degree for the nodes in this sample. The

 figure shows that 90% of all nodes have in-degree of 22 or less, and out-degree of 32 or less.

 This relative sparseness suggests a relationship of the form M c< Nlog(N), or maybe even

 M cx N, rather than M cx N2. In Section 4 we exploit this sparsity with an approximate

 representation for large network graphs.

 Figure 2(b) shows that the distribution for the out-degrees roughly follows a power-law

 distribution (and hence shows up as linear on a log-log scale). There is a growing literature

 (e.g., Barabasi and Albert 1999) showing that power-law behavior exists in large networks,

 including the Internet, genetic networks, and social interactions-so it is not surprising to

 see evidence of this property in our data.

 Table 2. Edge Addition for Activity on 1,000 Residential Accounts Over a Six-Month Period. For each
 month we show the percentage of the edges that we observed that we had not seen yet. The
 column marked Cumulative percent shows the unique edges we have seen through the entire
 study up until that point as a percentage of the union of all edges.

 Month New edges seen Percent new Cumulative percent

 1 5995 100 25.6
 2 4461 66.3 44.7
 3 4441 59.8 63.6
 4 3130 50.8 77.0
 5 3102 50.0 90.3
 6 2274 44.4 100
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 Figure 2. Plots of the (in-) out-degree of 1,000 residential accounts over a 180-day period. Panel (a) shows the

 cumulative percent of accounts having node degree less than or equal to k. Panel (b) shows the number of nodes
 having a specific out-degree.

This content downloaded from 140.182.64.70 on Tue, 26 Jun 2018 23:53:39 UTC
All use subject to http://about.jstor.org/terms



 COMPUTATIONAL METHODS FOR DYNAMIC GRAPHS 955

 200

 150 -

 cr

 2 100 -
 IL

 50 -

 O I
 0 50 100 150

 Days Active (out of 180)

 Figure 3. Histogram of the number of days with activity for 1,000 residential accounts over a 180-day period.

 2.4 ACTIVITY

 Although nodes and edges arrive and depart in fairly large numbers, it is also interesting

 to consider how often they were observed. Figure 3 is a histogram of the number of days that

 the given nodes were active during the entire 180-day period. The median of this distribution

 is 29 days, indicating that a typical node was active only on one out of six days during the

 study.

 2.5 IMPLICATIONS

 The plots and tables in this section illustrate that large numbers of nodes and edges

 appear or fail to appear on a daily basis. In some cases, their disappearance is temporary

 and in others it is permanent. Any procedure that attempts to capture network behavior will

 have to deal with node/edge addition and attrition in an automated fashion because there is

 little time to synchronize with databases of account information and yet process the current

 network activity. The relatively sparse connectivity of the graph is the aspect of the behavior

 that we attempt to exploit in devising a methodology to define, build, evolve, and maintain

 an approximate representation of the graph through time.

 3. DEFINITION OF A DYNAMIC GRAPH

 This section considers the definition of gt, a dynamic graph g at time t. We consider

 discrete time applications where new sets of nodes and edges corresponding to the trans-
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 actions from time step t to t + 1 only become available at the end of the time step, for

 example once a day. Associated with every edge is a weight, w(.) > 0, that is derived from

 an aggregation function applied to all (directed) transactions between a pair of nodes at

 time step t. For example, the aggregation function can be the "total duration of calls" or the

 "number of calls" from one node to another.

 We first define the sum of two graphs g and h

 G = ag (D h,

 where a and 3 are non-negative scalars. The nodes and edges in G are obtained from the

 union of the nodes and edges in g and h. The weight of an edge in G is

 w(G) = aw(g) + 3w(h),

 where the weight of an edge is set to zero if the edge is absent from the graph.

 Let the graph corresponding to the transactions during time step t be gt. We can define

 gt from gi where i = 1, . . . , t in several ways, depending on the purpose to which the graph

 is intended to be used.

 3.1 SUMMARIZING HISTORICAL BEHAVIOR

 The cumulative behavior of the graph through time can be defined as

 t

 S9t = 91 (D 92 g9t = 9i = 9t- I(D9t- (3.1)
 i=l1

 This definition of gt includes all historic transactions from the beginning of time. The last

 expression on the right-hand side illustrates that for computational purposes, the cumulative

 summary at time t is the sum of the cumulative summary at time t - 1 and the network

 activity at time step t. An alternative definition that considers only recent network activity,

 say the last k time steps, is the moving window definition

 0t = gt-k ( Dt-k+l ( D .. *g)gt = ( 9i (3.2)
 i=t-k

 This definition of gt tracks the dynamics of the transactional data stream, and can be

 thought of as a characterization of network behavior at time t - k/2, the center of the

 moving window. In contrast to Equation (3.1), this definition requires storage and retrieval

 of graphs characterizing network activity at each time step.

 3.2 PREDICTING FUTURE BEHAVIOR

 5t can be thought of as a predictor of network activity at time t + 1. The simplest such

 prediction is !t = 9t, the network graph corresponding to the transactions at time step t.
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 Figure 4. Contribution of a 60-minute call to edge weights as a function of time steps (days) in the recursive

 expansion (3.4) of St. The horizontal line at e = 0.1 denotes an adjustable threshold whereby edges with weights

 less than this value are deleted.

 The stability of this simple predictor can be improved by blending in network activity in a

 way that discounts the past in favor of recent behavior:

 !t = Wlgli w292 @ Wtgt = wi9i, (3.3)
 i=l1

 where the weights wi satisfy E wi = 1 and are an increasing function of i. Equation (3.2)

 can be expressed in this form with w1 = * = Wt-k-l = 0 and Wt-k = ... = St = 1/k.
 A particularly convenient form of the weights is wi = ti(1 - 0), where 0 < 0 < 1 is

 a (scalar) parameter that allows more (0 near 1) or less (0 near 0) history to influence the

 current graph. Figure 4 displays this graphically. If processing occurs daily, then with a value

 of 0 = 0.85, the edge weight associated with a 60-minute call will be effectively reduced

 to that of a 6-second call in about 30 days. This form of weight function is convenient in

 the sense that Equation (3.3) can be expressed in recurrence form

 St = gt-l ffl (1 - O)gt (3.4)

 This form is well-known in statistics as exponential smoothing (Winters 1960). It provides

 a smooth dynamic evolution of !gt without incurring the management and storage of graphs

 for many previous time periods. All that is needed is the graph through time period t - 1

 and the new set of transactions defined by gt.
 In the following we adopt Equation (3.4) as the definition of a dynamic graph at time
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 958 C. CORTES, D. PREGIBON, AND C. VOLINSKY

 t. It's usefulness as a smoothing operator and as a prediction make it suitable for a wide

 range of applications.

 4. APPROXIMATING gt

 The graph defined by Equation (3.4) is complete in the sense that it captures the entire

 graph, including edges with infinitesimally small weights. If such edges are maintained,

 the graph will eventually grow to be highly connected. This connectivity is undesirable as

 it preserves dated relationships that may be misleading (e.g., behavior six months ago may

 not be representative of current activity) or invalid (e.g., when accounts are closed their

 node labels are often reassigned, as is the case with telephone numbers and IP addresses).

 In addition to these considerations, the entire graph of the size we consider can be unwieldy,

 especially if it is too large to fit into main memory. This section proposes approximations to

 the entire graph that enable sophisticated applications without compromising it's integrity.

 Section 2 demonstrated that over a six-month period, the vast majority of nodes exhibit

 a low degree of connectivity. We propose an approximation to the entire graph that exploits

 this sparsity. The key to our approximation is the introduction of new aggregator edges to

 the graph that summarize edges that are eliminated for one of two reasons:

 1. Global costs. Either the weight associated with an edge is too small, in an absolute

 sense, to justify the overhead of maintaining that edge, or

 2. Local costs. The weight associated with an edge is too small relative to other edges

 coming in or out of a node to justify the overhead of maintaining that edge.

 The new aggregator edges are introduced at the subgraph level. For each node in

 gt, consider the subgraph consisting of that node and the directed edges to its immediate

 neighbors. A new outbound aggregator edge effectively replaces a subset of outbound edges

 of this subgraph such that it contains the same total weight of the edge subset. The node label

 on the terminating side of this edge is simply called other. A new inbound aggregator

 edge applies to a subset of inbound edges. The subsets of edges that are removed can be

 parameterized by a pair of thresholding functions, one applying to global thresholding of

 edge weights, and the other to local thresholding of edge weights.

 We first describe the global thresholding function. In practice, edges in Sgt with ex-

 tremely small weights carry a disproportionate amount of overhead in maintenance and

 storage of the graphs relative to the information that they contain. Such edges come about

 from new calls with unusually small weights (e.g., realizing that one dialed a fax number

 instead of a voice number) or from old calls that had meaningfully large weights initially,

 but have decayed through time by exponential weighting. We apply a thresholding function

 to each edge in gt such that all edges with weights less than a constant e are eliminated prior

 to storing the updated graph. In our applications we use e = 0.1. If edge weights reflect call

 durations (in seconds) then e = 0.1 coupled with 0 = 0.9 means that a one-second call lasts

 one day in the updated graph (since w(e)=0.9 x 0 + 0.1 x 1 sec). Alternatively, a 60-minute

 call persists in the graph for 78 days (since w(e)= 0.978 X 0.1 x 3600sec < 0.1).

 The local thresholding function that we use applies indirectly to the value of the edge
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 weights. For a node n with outbound (inbound) edgeset {e: ei, i = 1,... N}, we retain

 only the top-k outbound (inbound) edges where "top" is relative to the value of the weight

 associated with each edge:

 top-k{e} = {e : wj (e) > W[N-k] (e) (4.1)

 where w[] (e) is the ith order statistic of w(e). This type of thresholding function leads to

 possible asymmetry in the sense that an edge eij : ni -* nj might be retained in the top-k

 outbound edgeset of ni but not in the top-k inbound edgeset of nj. This would be the case

 for example if ni corresponds to a "normal" residential account and nj a toll free number
 for a large retailer. For all finite k, the only invariance between the complete graph and its

 top-k approximation is that the sum of the outbound edge weights equals the sum of the

 inbound edge weights, where the sum includes all nodes labeled as other.

 Considerations for selecting a value of k are discussed in the next subsection. In our

 experience we prefer a relatively small value of k that balances computational complexity

 (e.g., as regards speed and storage) with empirically determined accuracy (see below).

 4.1 TUNING THE APPROXIMATION

 The definition of gt given by Equation (3.4) requires a value of 0 that governs the degree

 to which new nodes and edges are blended in with recent activity. For top-k approximations,

 interplay between 0 and k determines both the size of gt and the degree to which it captures

 the evolving network graph. In theory, eis also a parameter which affects the graph, however,

 we choose to hold e = 0.1 for its nice interpretation stated above, that a one-second call

 lasts about one day, and any edge weight less than one second will be below threshold. This

 section explores the relationship between 0 and k in top-k approximations. In practice, our

 recommended approach is to first settle on a value of 0 that makes sense for the service

 being modeled, and for that 0, choose k so that interesting detail on most of the nodes is

 adequately captured.

 We explore values of 0 in the range 0.75-0.95. Reference to Figure 4 indicates that for

 this range of values, a one-hour call persists in the evolving network graph from several

 weeks to several months. In our applications, where phone numbers can be reassigned 30

 days after service is discontinued, a value of 0 > 0.95 would lead to contamination of the

 new accounts subgraph with activity from the previous account. Smaller values of 0 force

 more dynamics, with the result being that for many accounts with infrequent or sporadic

 usage, their subgraph is not adequately captured. We illustrate these points with several

 plots derived from the sample of 1,000 accounts introduced in Section 2. The graphs for

 these accounts were evolved using a range of values of 0, and the status of the accounts at

 the end of the period were used.

 Figure 5 shows the cumulative proportion of accounts that had k distinct outbound

 edges at the end of the 90-day study period. The figure shows that for 0 = 0.90, 80% of all

 accounts have at most 14 distinct edges, and 90% of all accounts have at most 22 distinct

 edges. If edge preservation was critical in an application, choosing a value of k = 14(22)

 would lead to approximately 80% (90%) of all nodes having all their edges preserved by
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 Figure 5. Cumulative proportion of accounts that had k distinct outbound edges at the end of a 90-day study

 period.

 the top-k approximation.

 The curves displayed in Figure 5 relate to the presence or absence of edges without

 regard to the weights on those edges. An edge that corresponds to daily one-hour calls

 between a pair of accounts is treated identically to an edge that resulted from a call lasting

 one second on the last day of the study period. The only role that edge weight played was

 that an edge was deleted if its weight dropped below e = .1. Figure 6 addresses this issue

 by displaying the cumulative proportion of accounts that had at least 90% of their edge

 weights captured by k edges. If the weight function represents the number of calls, then

 the curves represent the cumulative proportion of accounts that had at least 90% of their

 calls captured by k distinct edges. If the weight function represents the length of calls, then

 the curves represent the cumulative proportion of accounts that had at least 90% of their

 "time on network" captured by k distinct edges. The figure shows that for 0 = 0.90, 80%

 of all accounts have 90% of their edge weights captured in five distinct edges and 90%

 of all accounts have 90% of their edge weights captured in eight distinct edges. If weight

 preservation was critical in an application, choosing a value of k = 5(8) would lead to

 approximately 80% (90%) of all nodes having 90% of their edge weights preserved by the

 top-k approximation.

 4.2 IMPLEMENTING THE APPROXIMATION

 We propose a constructive approach to implementing our approximation to a large

 time-varying graph. Consider a node in the graph, its associated directed edges, and weights
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 Figure 6. Cumulative proportion of accounts that have at least 90% of their edge weights captured by k edges.

 associated with each edge. A data structure that consists of these weighted directed edge

 sets for each node is a representation of the complete graph. This data structure is redundant

 because it is indexed by nodes so that edges must be stored twice, once for the originating

 node and once for the terminating node. In contrast, a data structure that stores each edge

 once must be doubly indexed by nodes. The cost of edge duplication is often mitigated by

 gains in processing speed when subgraphs around nodes are expanded (see next subsection).

 For this reason we have chosen to represent our graphs as a singly indexed list of nodes,

 each with an associated array of weighted directed edges.

 The singly indexed node list represents our approximation, but the definition in Equation

 (3.4) implies that new activity must be blended into it at fixed time steps. Let gt -1 denote

 the top-k approximation to gt- I at time t - 1 and let gt denote the graph derived from the

 new transactions at time step t. The approximation to !9t is formed from gt- 1 and gt, node
 by node, using a top-k approximation to Equation (3.4):

 gt = top-k{fOgt1 @ (1 - O)9t} (4.2)

 Thus, we first calculate the edge weights for all the edges of 0gt- I @ (1 - O)gt. Then for

 each node we sort the edges according to their weight. (The overflow node other is not

 given any special treatment in these computations.) The top-k are preserved, and if there

 are more than k edges in the edge set for that node, the weights of the remaining edges are

 added to the weight of the edge going from the node to node other. These operations are

 displayed pictorially in Figure 7 using 0 = .85. Notice that a new call today with a heavy

 edge weight (labeled X6547) replaces an old call with a low edge weight (labeled X4532).
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 Old top-k edges: Today's edges: New top-k edges:

 node-labels wts node-labels wts node-labels wts

 X5467 5.2 X5467 2.0 X2656 5.2

 X2656 5.0 X2656 6.2 X5467 4.6

 X4132 4.5 X4132 0.8 X4132 3.9

 0 X4231 2.3 + (I 0) X6547 10.0 _ X4231 2.0
 X3142 1.9 X3142 1.6

 X4212 1.8 X4212 1.5

 X1423 0.8 X6547 1.5

 X2312 0.5 X1423 0.7

 X4532 0.2 X2312 0.4

 other 0.1 other 0.0 other 0.3

 Figure 7. Computing a new top-k edge set from the old top-k edge set and today's edges. Note how a new edge

 (X6547) enters the top-k edge set, forcing an old edge (X4532) to be added to other.

 Between updating steps, transactions need to be collected and temporarily stored. At

 the end of that time period, the transactions are aggregated and the subgraph updated. The

 length of the time period represents a trade-off in accuracy: the longer the time period,

 the better an estimate of the top-k edge set, but the more outdated the resulting subgraph.

 In the application discussed in Section 5, we perform daily updates, thereby maintaining

 reasonable accuracy while requiring temporary disk space for only one day of data. For a

 related discussion see Cortes and Pregibon (1999).

 Prior to storing the updated graph, we remove all edges that fall below the e threshold.

 As argued above, this reaping process results in both a smaller and a more interpretable

 graph. For our large network graph this thresholding results in a 50% reduction in size,

 from 14Gb (maximum size at saturation of top-9 approximation) to 7Gb (stable size with

 average of 4.5 slots per indexed node).

 4.3 SUBGRAPH EXPANSION

 Our implementation of the subgraph consisting of the top-k inbound and the top-k

 outbound edges of a node is ideal for fast extraction of larger subgraphs centered on the

 node. The data structure containing the top-k approximation can be queried recursively for

 each node in the top-k edge sets of the center node.

 We grow the subgraphs in a breadth-first traversal of the data structure. For notational

 purposes, we denote the top-k inbound and outbound nodes and edges of node n by R1 (n),

 the subgraph of radius 1 centered at node n. Similarly let R2(n) denote the subgraph of

 radius 2 centered at node n. Note that R2 (n) can be formed from the "union" of R1 (n) and

 the radius-I subgraph centered on each node contained in R1 (n). In general, we can define

 subgraphs of any size using the recursion

 Rj+1 (n) = j R1 (node).
 nodeERj (n)
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 We use the quoted term "union" and the symbol W instead of simply U because of the

 aforementioned potential asymmetry in the edge weights. The top-k approximation may

 force an edge from/to a high activity node to be partially, or maybe even completely, absorbed

 by category other. However, a low activity node that is connected to a high activity

 node is likely to preserve the edge in its top-k approximation. In cases where both nodes

 preserve a common edge in their top-k list, the weights associated with that edge are

 potentially different for the two nodes. In those cases we use the maximum edge weight in

 the definition of Rj+I (n), since the maximum represents the weight least affected by the
 top-k approximation.

 The index structure of our representation is critical because we often need to compute

 and compare many subgraphs on a daily basis. We have tuned our algorithms so that the

 average time for retrieving and rendering R2 (n) subgraphs from our data structure of several

 hundred million nodes is just under one second (on a single processor).

 In our applications, we rarely explore edge sets greater than R2((n), as the edge sets
 become unmanageably large and remarkably uninformative. Subgraph expansion also re-

 inforces arguments suggesting that a large value of k (in defining the top-k approximation)

 is not necessarily desirable when network graphs are used to study relationships between

 nodes. Spurious edges (e.g., misdialed numbers) can have unintended consequences upon

 subgraph expansion. We also discuss this further in Section 6 where we suggest additional

 edge pruning in R2 (n) to further reduce "clutter" in a subgraph.

 5. APPLICATION

 In the telecommunications industry, there are many different types of fraudulent be-

 havior. Subscription fraud is a type of fraud that occurs when an account is set up by an

 individual who has no intention of paying any bills. The enabler in such cases involves either

 flawed processes for accepting and verifying customer supplied information, or identity-

 theft where an individual impersonates another person. In either case, if left undetected, the

 fraud is typically only discovered when the bill is returned to sender, often after thousands

 of dollars have been lost. Because speed is critical in reducing losses due to fraud, it is

 essential to assess inherent riskiness as each new account is activated on the network. This

 section explores this possibility by defining a procedure that assesses risk on the basis of a

 node's connectivity to other nodes.

 5.1 SUBGRAPH-BASED ACCOUNT LINKAGE

 Consider the case where we have information on an account that was recently discon-

 nected for fraud. If identity theft was the root cause of the fraudulent account, we might

 expect this same individual to appear with a new account bearing a different name and

 address. Basically the fraudster has now assumed the identity of a new victim. We attack

 this problem with the intuition that while the subscription information is not useful for

 matching network IDs to the same individual, the calling patterns of the new account, as
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 Figure 8. Subgraph-based account linkage. The two individual subgraphs are superimposed (in the doubly labeled

 rectangle) to emphasize their similarity. Solid lines indicate edges common to both subgraphs, while dashed lines

 indicate edges belonging to only one subgraph.

 characterized by its R2 subgraph, should not change very much from the previous account.

 Figure 8 provides an illustration where we overlay two R2 subgraphs apparently belonging

 to the same individual. The central nodes of the two subgraphs are indicated by the rectangle

 with two ID numbers. One of these numbers corresponds to a known fraudulent account, the

 other to a new account on our network. The amount of overlap between the two subgraphs

 is strong evidence that these numbers are related and increases the fraud risk of the new

 account.

 Subgraph-based account linkage is a nonstandard problem that involves defining a

 distance function to quantify the closeness of two accounts based on subgraphs centered

 on the two accounts. The distance between two subgraphs depends on both the quantity

 and the quality of the overlapping nodes. The quantity of the overlap can be measured

 by the percentage of overlapping nodes. However, all overlapping nodes are not equally

 informative, so a measure of quality is needed as well. Many graphs will intersect at high-use

 nodes, such as large telemarketing firms or widely advertised customer service numbers.

 An informative overlapping node is one that has relatively low in- and out-degree, and in

 the best case, is shared only by the nodes under consideration for a match. We now describe
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 Figure 9. Success of subgraph matching. Observedpercentage of matching node-pairs versus deciles ofpredicted
 matching probability.

 a measure that captures these notions.

 Given a new account a and known fraudulent account b, let 0 = Rj (a) n Rj (b) denote
 the set of all overlapping nodes in the two radius j subgraphs. We define

 Overlap(Rj (a), Rj (b)) = E WaoWbo 1 1
 oEO Wo dao dbo'

 where wo is the overall weight of node o (the sum of all edge weights in R1 (o)), Wao iS

 the weight of edges between node a and node o in Rj (a), and dao is the minimal distance

 from node a to node o in Rj (a). The terms Wbo and dbo are defined similarly. [In the case
 where dao > 1, it is not clear what the weight Wao should be, since there is no direct edge

 between the two. For this application we elected to assign a small default weight in order to

 minimize the effect of these overlaps]. Intuitively, the numerator measures the strength of

 the connection from a and b to the overlapping node, while the denominator corrects for an

 overlap node which is either common to many nodes or is further in the graph from a or b.

 This measure is large for overlapping nodes that have strong links to the nodes of interest,

 but otherwise have low overall volume.

 Even armed with this definition of distance, subgraph-based matching is computation-

 ally difficult because of the dynamic nature of our network data as described in Section

 2-each day we see tens of thousands of new accounts. For each of the new accounts, we

 need to compute it's subgraph, and then the distance from it to the subgraph of all recendly

 confirmed fraudulent accounts. Assuming for these purposes that we maintain a library of

 the most recent 1,000 fraudulent accounts, tens of millions of pairwise distances need to be

 computed daily. We have hamessed the computations by maintaining R2 subgraphs for all

 accounts in our "fraud library" and computing R1 subgraphs for all new accounts.
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 We obtained a training set of paired accounts where investigators were able to determine

 whether the old and new accounts belonged to the same individual. We built a decision tree

 using the overlap score defined above as a predictor along with several covariates obtained

 from the information provided by the subscriber. The decision tree produces a "matching"

 probability for any set of node pairs. Figure 9 shows the performance of the decision

 tree on an independent test set of paired accounts. For the sample of 1,537 pairs that we

 validated, the figure shows the observed proportion of matching node-pairs for each decile

 of predicted matching probability. As the plot shows, account pairs with a high predicted

 probability of matching based on our methodology were indeed usually associated with the

 same individual.

 6. COMMUNITIES OF INTEREST

 As stated earlier, edge sets larger than R2 (n) can be unmanageably large and remarkably

 uninformative. To help reduce this "clutter" we often apply a thresholding function to the

 edge weights in the expansion of subgraphs, so that any edge whose weight is below the

 threshold need not be expanded.

 This threshold function is the simplest operator in a series of functions one can apply

 to an edge set to bring out what we call the community of interest, or COI, for a given node.

 In telecommunications, a COI operationalizes the notion of a "calling circle," the group of

 accounts around a specified account, where there is some unobservable relationship between

 them (i.e., personal/professional/familial interests) that motivates accounts to communicate

 with each other. Intuition suggests that when such a relationship exists, that nodes involved

 in the relationship will be linked and that the weights along these links will be larger than

 weights along links to nodes not sharing in the relationship. There is also the notion of

 diameter of a calling circle since one can discuss "immediate calling circles" as well as

 "extended calling circles." Our subgraphs captures these notions in a primitive fashion

 through R1 (n) and Rj (n), j > 1 edge sets, respectively, but in applications, the raw edge
 sets are often treated as the starting point in deriving a COI.

 There are several reasons why the raw edge sets are often not sufficient for capturing

 COTs. They can be summarized into two main categories:

 1. spurious edges in Rj (n), and

 2. missing edges in Rj (n)

 Spurious edges arise from the fact that while we posit an unobservable relationship

 between accounts that encourages communication between them, additional calls are cap-

 tured in the data that can be totally outside the relationship. For example, misdialed calls

 are captured by the edge sets, as well as unwanted telemarketing calls. The effect of such

 calls on the edge sets can be enormous, since expanding the edge set to the next diameter,

 brings in all the accounts linked to this spurious node, and arguably, these are conceptually

 far removed from an accounts calling circle.

 Missing edges arise in several ways, reflecting realities associated with large graphs
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 arising from transactional data. One important way that edges are missing relates to the fact

 that in many applications there are numerous service providers so that any single network

 carries only a fraction of the transactions. A related way that edges are missing concerns the

 locations of the devices in the network topology that records transactions. By this we mean

 that transactions are recorded when they cross certain network elements where recording

 equipment is located, and the corresponding records are then sent to a central repository for

 analysis. But many transactions could occur "below" the recording point and subsequent

 analysis is blind to these transactions. An example is the separation between local and long-

 distance calls in telecommunications whereby the long-distance carrier is blind to any calls

 on the local level. Similarly for Internet traffic monitoring, data collection equipment at

 Internet gateway routers is blind to TCP/IP traffic between computers behind that network

 gateway.

 In our applications of COI for large dynamic graphs, we address these deficiencies

 by introducing aspects of the problem not captured in the available data. For example, we

 would like to discount edges that might have large weight due simply to a single long call,

 for example, to a customer support center. One way we deal with such nuances is to build

 a large edge set, and then find the strongly connected component containing the node of

 interest. This creates a subgraph where every node can be reached from every other node.

 Another way of removing spurious edges is to apply a high threshold c, which will mitigate

 the effects of one-time nonrepresentative calls.

 Application of a thresholding function and applying a strongly connected component

 algorithm are both examples of operators we apply to prune edges and nodes from Rj (n).
 Alternatively, if we believe that edges may be missing from the observed set of transac-

 tional records, we may want to insert pseudo edges between certain nodes in Rj (n). For
 example, local phone calls between accounts would not appear in traffic collected from

 a long-distance network. Similarly since most networks, telephony or otherwise, exist in

 competitive markets, the observed edge set collected from a single network is blind to traffic

 carried on a competitors network. If the notion of COI is meant to capture the existence

 of implicit underlying relationships, adding certain pseudo edges to competitor nodes is a

 reasonable approach to uncovering such relationships.

 As is clear from this discussion, the transformation of an edge set into a COI is not a

 science. One normally lacks a reference for calibrating the process so that feed-back from

 COI-based applications is often the only guidance.

 7. RELATED WORK

 The analysis of directed graphs goes by many names and has been studied in many

 fields, including sociology (Wasserman and Faust 1994), epidemiology (Klovdahl 1985), in-

 formation retrieval (Salton and McGill 1983), statistics (Chickering and Heckerman 1997),

 operations research (Ravindran, Phillips, and Solberg 1987), and software engineering

 (Mancoridis et al. 1998). Clustering is a common goal in these fields, and is similar in

 spirit to our approach of defining communities of interest.
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 Arguably the oldest research field in this area is the field of social networks. Social net-

 works model the interdependencies between "actors" or "agents" in a dataset by analyzing

 the relationships between them, represented as edges in a graph. This type of analysis has

 grown to study such diverse topics as disease transmission, international trade, and computer

 networking. Social network theory can incorporate complex stochastic models, explanatory

 variables for both nodes and edges, and time dependent graphs. However, the field has al-

 ways focused on the study of small graphs. A popular textbook in the field, Wasserman and

 Faust (1994), contains five datasets used to illustrate the methodology, the largest of which

 contains 32 nodes. The mathematically complex and computationally intensive methods

 generally do not scale, and to date, we have not used them in our research.

 Flake, Lawrence, and Giles (2000) provided a definition of communities of interest in

 terms of number of edges connecting a set of nodes that has the nice property that the COI

 can be efficiently enumerated by applying a maximum flow algorithm. Citation analysis of

 scientific papers also aims at finding communities in large graphs. A distance between two

 documents is defined using co-citation (the number of citations in common) or bibliographic

 coupling (the number of times both works are cited in other papers). Using this distance

 measure, clusters in the database can be found. A successful example of this work is the

 NEC Research Index (Lawrence, Bollacker, and Giles 1999; http://citeseer.nj.nec.com/cs),

 which currently documents and cross references 7 million scientific works, and for each of

 those works, lists the most similar books by several different metrics.

 The Internet is natural to treat as a massive graph, where Web sites are nodes, and the

 links between them are edges. Current research (Gibson, Kleinberg, and Raghavan 1998;

 Kleinberg 1999) uses "hubs" (sites that link to many others) and "authorities" (sites that are

 linked to by others) in order to identify clusters in the web that deal with a particular topic.

 Extensions of this work use network flow algorithms (Flake, Lawrence, and Giles 2000)

 and these are quite effective in finding small subject clusters.

 Marketing has also inspired analysis of large graphs. The active research topics of mar-

 ket basket analysis (Agrawal and Srikant 1994), viral marketing (Domingos and Richardson

 2001), and collaborative filtering (Resnick et al. 1994) all use graph algorithms to discover

 communities of consumers with similar behavior. These popular methods have been used

 successfully at sites like Amazon.com, which suggests items to purchase based on purchases

 of other customers who recently purchased the same item.

 Despite the wealth of research into large network graphs, our research is unique in

 combining the following attributes:

 * Scale. Our network graphs contain hundreds of millions of nodes, and we are

 potentially interested in retrieving local subgraphs for any one of them.

 * Speed. Our data structure, accessed recursively, along with offline processing, allows

 us to compute subgraphs centered on any node of the graph in fractions of a second.

 * Dynamic updating. The graph incorporates the continuous stream of incoming data,

 so that any analysis is as recent as the most recent data. Time is a crucial element,

 since today's network may contain tens of thousands of new nodes and edges than

 yesterday's graph did. Our exponential updating creates a smoothed view of network
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 behavior, with the largest weights on the most recent events and the smallest weights

 on the oldest events.

 * Condensed representation of the graph. Conceptually, we view a massive graph

 as the union of a massive number of small graphs R1 (n). The approximation we

 employ that limits node degree to the top-k is effective because large dynamic graphs

 seem to be sparse as well.

 Another appealing aspect of this work is that our applications measure direct interaction

 between the nodes. Accounts form a community by actually communicating, creating a

 richer basis on which to define clusters. In collaborative filtering or market basket analysis,

 the goal is to find indirect links between people. Two people are similar not because of a

 direct interaction, but because they both purchased similar items. Similarly, large scale web

 mining explores static links between pages, but not user traffic along those links.

 8. CONCLUSIONS

 This article introduced the concept of a dynamic graph and motivated the concept with

 network data from a sample of AT&T residential accounts. This led to our definition of a

 dynamic graph 9t (at time t) as an exponentially weighted average of the previous graph

 (at time t - 1) and a new network activity. We introduced a data structure that can be

 used to capture the evolution of a graph through time that was amenable to the exponential

 weighting scheme. This data structure allows the subgraph around any particular node to

 be quickly and efficiently expanded to an arbitrary diameter. An application was introduced

 that capitalized on this feature.

 We have concentrated on the computational aspects of building and evolving the data

 structure for real applications. We have not explored the statistical aspects of treating our

 data structure and the associated algorithm for traversal as an approximation 9t (k) to the

 true graph gt, where k denotes the size of the top-k edge set maintained in the data structure.

 Similarly models and methods in social networks, while not applicable to massive graphs,

 are applicable to R2 (n) edge sets. These models might provide the rigorous justification

 for transforming edge sets into COI that we currently lack. We hope to explore these ideas

 in the near future.

 Another topic for further research is how to prune a subgraph so that only informa-

 tive edges and nodes are retained. A common approach from (static) graph theory is to

 extract the strongly connected component. The strongly connected component algorithm

 has the advantage that it scales linearly in the order of nodes, and we have used it in our

 computationally intensive applications. However, we feel that certain features inherent to

 telecommunication networks such as asymmetric edges (due to some customers subscribing

 to a competitor), sinks (toll-free calling) and sources (large corporations), makes strongly

 connected components a less than ideal choice for pruning subgraphs Rj (n).
 Initializing, storing, and updating the data structures that we employ are facilitated by

 the programming language Hancock (Cortes et al. 2000). Hancock is a domain-specific

 C-based language for efficient and reliable programming with transactional data. Han-
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 cock is publicly available for noncommercial use at http://www.research.att.com/-kfisher/

 hancock/.

 [Received May 2002. Revised November 2003.]
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