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System reliability often depends on the effort of many indi-
viduals, making reliability a public good. It is well-known
that purely voluntary provision of public goods may result
in a free rider problem: individuals may tend to shirk, re-
sulting in an inefficient level of the public good.

How much effort each individual exerts will depend on
his own benefits and costs, the efforts exerted by the other
individuals, and the technology that relates individual effort
to outcomes. In the context of system reliability, we can
distinguish three prototype cases.

Total effort. Reliability depends on the sum of the efforts
exerted by the individuals.

Weakest link. Reliability depends on the minimum effort.

Best shot. Reliability depends on the maximum effort.

Each of these is a reasonable technology in different cir-
cumstances. Suppose that there is one wall defending a
city and the probability of successful defense depends on
the strength of the wall, which in turn depends on the sum
of the efforts of the builders. Alternatively, think of the
wall as having varying height, with the probability of suc-
cess depending on the height at its lowest point. Or, finally,
think of a there being several walls, where only the highest
one matters. Of course, many systems involve a mixture of
these cases.

1. LITERATURE

Hirshleifer [1983] examined how public good provision var-
ied with the three technologies described above. His main
results were:

1. With the weakest-link technology, there will be a range
of Nash equilibria with equal contributions varying
from 0 to some maximum, determined by the tastes
of one of the agents.
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2. The amount of underprovision of the public good rises
as the number of contributors increases in the total
effort case, but the efficient amount of the public good
and the Nash equilibrium amount will be relatively
constant as the number of contributors increases.

3. Efficient provision in the best-effort technology gener-
ally involves only the agents with the lowest cost of
contributing making any contributions at all.

Cornes [1993] builds on Hirshleifer’s analysis. In partic-
ular he examines the impact of changes in income distri-
bution on the equilibrium allocation. Sandler and Hartley
[2001] provide a comprehensive survey of the work on al-
liances, starting with the seminal contribution of Olson and
Zeckhauser [1966]. Their motivating concern is international
defense with NATO as a recurring example. In this context,
it is natural to emphasize income effects since countries with
different incomes may share a greater or lesser degree of the
burden of an alliance.

The motivating example for the research reported here is
computer system reliability and security where teams of pro-
grammers and system administrators create systems whose
reliability depends on the effort they expend. In this sort
of case, considerations of costs, benefits, and probability of
failure become paramount, with income effects being a sec-
ondary concern. This difference in focus gives a different fla-
vor to the analysis, although it still retains points of contact
with the earlier work summarized in Sandler and Hartley
[2001] and the other works cited above.

2. NOTATION

Let xz; be the effort exerted by agent i = 1,2, and let
P(F(z1,%2)) be the probability of successful operation of
the system. Agent i receives value v; from the successful
operation of the system and effort x; costs the agent c;x;.

The expected payoff to agent i is taken to be

P(F(x1,22))vi — x5
and the social payoff is
P(F(x1,22))[v1 + v2] — 131 — c2a.

We assume that the function P(F) is differentiable, increas-
ing in F', and is concave, at least in the relevant region.

We examine three specifications for F', motivated by the
taxonomy given earlier.

Total effort. F(z1,22) = 21 + z2.
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Figure 1: Nash equilibrium in total effort case.

Weakest link. F(z1,2z2) = min(z1, z2).

Best shot. F(x1,x2) = max(x1,x2).

3. NASH EQUILIBRIA

We first examine the outcomes where each individual chooses
effort unilaterally, and then compare these outcomes to what
would happen if the efforts were coordinated so as to maxi-
mize social benefits minus costs.

3.1 Total effort
Agent 1 chooses x1 to solve

max v P(z1 + z2) — a1z,
1

which has first-order conditions
v P (z1 +22) = 1.

Letting G be the inverse of the derivative of P’, we have
1+ x2 = G(er/v1).

Defining 1 = G(c1/v1) we have the reaction function of
agent 1 to agent 2’s choice

fl(xg) =TI — T2.
Similarly
fo(z1) = T2 — x1.

These reaction functions are plotted in Figure 1. It can eas-
ily be seen that the unique equilibrium involves only one
agent contributing effort, with the other free riding, except
in the degenerate case where each agent has the same ben-
efit/cost ratio: v2/co = vi/c1.

Let us suppose that va/c2 > vi/ci. Then, Z2 > 1, so
agent 2 contributes everything and agent 1 free rides.

Fact 1. In the case of total effort, system reliability is
determined by the agent with the highest benefit-cost ratio.
All other agents free ride on this agent.

The fact that we get this extreme form of free riding when
utility takes this quasilinear form is well-known; see, for ex-
ample, Varian [1994] for one exposition.

3.2 Weakest link

Agent 1’s problem is now

max v1 P(min(z1,z2)) — c121.
x1
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Figure 2: Nash equilibrium in weakest link case.

It is not hard to see that agent 1 will want to match agent
2’s effort if x2 < Z1, and otherwise set x1 = Z1. The two
agents’ reaction functions are therefore

fi(ze) =
fa(z1) =

These reaction functions are plotted in Figure 2. Note that
there will be a whole range of Nash equilibria. The largest of
these will be at min(Z1,Z2). This Nash equilibrium Pareto
dominates the others, so it is natural to think of it as the
likely outcome.

min(z2, T1) (1)

min(z1, ZT2). (2)

Fact 2. In the weakest-link case, system reliability is de-
termined by the agent with the lowest benefit-cost ratio.

3.3 Best shot

The best shot case is equivalent to the linear case. Obvi-
ously only one agent will contribute, the one with the highest
benefit-cost ratio.

4. SOCIAL OPTIMUM
4.1 Total effort

The social problem solves

max P(x1 + x2)[v1 + v2] — a1 — 2.
1,T2

The first-order conditions

P'(z1 + x2)[v1 + v2]
P'(z1 + x2)[v1 + v2]

C1 (3)
C2. (4)
At the optimum, the agent with the lowest cost exerts all

the effort. Let ¢min = min{ci, c2}, so that the optimum is
determined by

INIA

21 + 23 = G(cmin/ (V1 + v2)). (5)
Summarizing, we have:

FACT 3. In the total effort case, there is always too little
effort exerted in the Nash equilibrium as compared with the
optimum. Furthermore, when va/ca > vi/c1 but c1 < ca,
the “wrong” agent exerts the effort.

4.2 Best shot

The social and private outcomes in this case are the same
as in the total effort case.



4.3 Weakest link

The social objective is now

max P(min(z1,z2))[v1 + v2] — c1x1 — cawo.
1,22

At the social optimum, it is obvious that x1 = x2 so we can
write this problem as

max P(z)[v1 + v2] — [e1 + e2]z,
which has first-order conditions
P'(z)[v1 + v2] = 1 + ¢,
or

z1 =z =2 = G((c1 + c2)/(v1 + v2)). (6)

Fact 4. The probability of success in the socially optimal
solution is always lower in the case of weakest link that in
the case of total effort.

This occurs because the weakest link case requires equal
effort from all the agents, rather than just effort from any
single agent. Hence it is inherently more costly to increase
reliability in this case.

S. IDENTICAL VALUES, DIFFERENT COSTS

Let n be the number of agents and, for simplicity, set
v; =1 foralli =1,...,n. In the total-effort case, the social
optimum is given by

nP'(r) = min ¢;,
while the private optimum is determined by
P'(z) = ming;.

In the weakest-link case, the social optimum is determined
by

nP'(z) = Z Ciy
or
P'(z)=c= lZc
n < v
while the private optimum is determined by
P'(z) = maxc;.

If we think of drawing agents from a distribution, what mat-
ters for system reliability are the order statistics—the high-
est and lowest costs of effort.

FacT 5. Systems will become increasingly reliable as the
number of agents increases in the total efforts case, but in-
creasingly unreliable as the number of agents increases in the
weakest link case.

6. INCREASING THE NUMBER OF AGENTS

Let us now suppose that v; = ¢; = 1 and that the number
of agents is n. In this case, the social optimum in the case
of total effort is determined by

nP'(Z xi) =1,

7

or

Zx = G1/n).

The Nash equilibrium satisfies

P,(Z :L‘l) = 1,

%

Zm =G(1).

FACT 6. In the total efforts case with identical agents,
the Nash outcome remains constant as the number of agents
is increased, but the socially optimal amount of effort in-
creases.

or

In weakest-link case, the social optimum is determined by
nP'(z) =n,

which means that the socially optimal amount of effort re-
mains constant as n increases. In the Nash equilibrium

Pl(a) =1,
or
xz=G(1).
Fact 7. In the weakest-link case with identical agents,

the socially optimal reliability and the Nash reliability are
identical, regardless of the number of agents.

7. FINES AND LIABILITY
7.1 Total effort

Let us return to the two-agent case, for ease of exposition,
and consider the optimal fine, that is, the fine that induces
the socially optimal levels of effort. Let us start with the
total effort case, and suppose that agent 1 has the lowest
marginal cost of effort. If we impose a cost of v2 on agent 1
in the event that the system fails, then agent 1 will want to
maximize

viP(z1 + x2) + v2[l — P(z1 4 22)] — c1z1.
The first order condition is
(v1 +v2) P’ (21 + 22) = €1,

which is precisely the condition for social optimality. This
result easily extends to the n-person case, so we have:

FAcT 8. A fine equal to the costs imposed on the other
agents should be imposed on the agent who has the lowest
cost of reducing the probability of failure.

Alternatively, we could consider a strict liability rule, in
which the amount charged in the case of system failure is
paid to the other agent. If the “fine” is paid to agent 2, his
optimization problem becomes

UgP(Il + xg) + [1 — P(xl + Iz)]vg — C2X2.
Simplifying, we have

V2 — C2X2,



so agent 2 will want to set 2 = 0. But this is true in the
social optimum as well, so there is no distortion. Obviously
this result is somewhat delicate; in a more general specifica-
tion, there would be some distortions from the liability pay-
ment since it will, in general, change the behavior of agent 2.
If the liability payment is too large, it may induce agent 2
to seek to be injured. This is not merely a theoretical issue,
as it seems likely that if liability rules would be imposed,
each system failure would give rise to many plaintiffs, each
of whom would seek maximal compensation.

The fact that the agents with the least cost of effort to
avoid system failure should bear all the liability is a standard
result in the economic analysis of tort law, where it is some-
times expressed as the doctrine of the “least-cost avoider.”
As Shavell [1987], page 17-18, points out, this doctrine is
correct only in rather special circumstances of which one is
the sum-of-efforts case we are considering.

7.2 Weakest link

In the case of weakest link, strict liability doesn’t work
and we must use negligence rule. Under this doctrine, the
court establishes a level of due care, T. In general, this could
be different for different parties, but that generality is not
necessary for this particular case. If the system fails, there is
no liability if the level of care/effort meets or exceeds the due
care standard. If the level of care/effort was less than the
due care standard, then the party who exerted inadequate
care/effort must pay the other the costs of system failure.

Let z* be the socially optimal effort level; i.e., the level
that solves

max (vi +v2)P(z) — (c1 + c2)z.
It therefor satisfies the first-order condition
(vi +v2)P'(z") = c1 + co.

We need to show that if the due care standard is set at
Z = x*, then 21 = 22 = 7 is a Nash equilibrium.!

To prove this, assume that o = . We must show that
the optimal choice for agent 1 is 1 = Z;. Certainly we
will never have x1 > Z since choosing x; larger than Z has
no impact on the probability of system failure and incurs
positive cost. Will agent 1 ever want to choose z1 < z7?
Agent 1’s objective function is

1)1P(I1) + (1 — P(xl))vz —C1T1.

Computing the derivative, and using the concavity of P(x),
we find

(v1 +v2)P'(z1) — c1 > (v1 +v2)P'(z%) — c1 = ca.

Hence agent 1 will want to increase his level of effort when
x1 < T1. Summarizing:

FAcT 9. In the case of weakest link, strict liability is not
adequate in general to achieve the socially optimal level of
effort, and one must use a negligence rule to induce the op-
timal effort.

Again, this is a standard result in liability law, which
was first established by Brown [1973]; see Proposition 2.2

LOf course, there will be many other Nash equilibria as well,
due to the weakest-link technology. The legal due-care stan-
dard has the advantage of serving as a focal point to choose
the most efficient such equilibrium.
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Figure 3: Sequential contribution in total efforts
case.

in Shavell [1987], page 40. The argument given here is eas-
ily modified to show that the negligence rule induces optimal
behavior in the sum-of-efforts case as well, or for that mat-
ter, for any other form P(x1,x2).

8. SEQUENTIAL MOVES
8.1 Total effort

Let us now assume that the agents move sequentially,
where the agent who moves second can observe the choice of
the agent who moves first. The following discussion is based
on Varian [1994].

We assume that agent 1 moves first. The utility of agent 1
as a function of his effort is given by,

Ui(z1) = viP(z1 + f2(z1)) — c11.
which can be written as
U1 (l‘l) = U1P(l‘1 + max{i’z — X1, 0}) —C1r1.

It is clear from Figure 3 that there are two possible op-
tima: either the first agent exerts zero effort and achieves
payoff v1P(Z2) or he contributes Z; and achieves utility
Ulp(fl) —C1%1.

Case 1. The agent with the lowest value of vi/c; moves
first. In this case the optimal choice by the first player
is to choose zero effort. This is true since

’Ulp(i’z) > U1P(i‘1) > Ulp(i‘l) —C171.

Case 2. The agent with the highest value of v;/c; is the
first contributor. In this case, either contributor may
free ride. If the agents have tastes that are very simi-
lar, then the first contributor will free ride on the sec-
ond’s contribution. However, if the first mover likes
the public good much more than the second, then the
first mover may prefer to contribute the entire amount
of the public good himself.

Referring to Figure 3 we see that there are two possible
subgame perfect equilibria: one is the Nash equilibrium,
in which the agent who has the highest benefit-cost ratio
does everything. The other equilibrium is where the agent
who has the lowest benefit-cost contributes everything. This



equilibrium cannot be a Nash equilibrium since the threat
to free ride by the agent who likes the public good most is
not credible in the simultaneous-move game.

Fact 10. The equilibrium in the sequential-move, the total-

effort game always involves the same or less reliability than
the simultaneous-move game.

Note that it is always advantageous to move first since
there are only two possible outcomes and the first mover
gets to pick the one he prefers.

Fact 11. If you want to ensure the highest level of secu-
rity in the sequential-move game, then you should make sure
that the agent with the lower benefit-cost ratio moves first.

8.2 Best-effort and weakest-link

The best-effort case is the same as the total-effort case.
The weakest-link case is a bit more interesting. Since each
agent realizes that the other agent will, at most, match his
effort, there is no point in choosing a higher level of effort
than the agent who cares the least about reliability. On the
other hand, there is no need to settle for one of the inefficient
Nash equilibria either.

Fact 12. The unique equilibrium in the sequential-move
game will be the Nash equilibrium in the simultaneous-move

game that has the highest level of security, namely min(Z1, Z2).

Hirshleifer [1983] recognizes this and uses it as an argu-
ment for selecting the Nash equilibrium with the highest
amount of the public good as the “reasonable” outcome.

9. NOTES ON ADVERSARIES

Let us now consider what happens if there is an adversary
who is trying to increase the probability of system failure.
First we consider the case of just two players, then we move
to looking at what happens with a team on each side.

We let = be the effort of the defender, and y the effort of
the attacker. Effort costs the defender ¢ and the attacker
d. The defender gets utility v if the system works, and the
attacker gets utility w if the system fails. We suppose that
the probability of failure depends on “net effort,” z —y, and
that there is a maximal effort £ and g for each player.

The optimization problems for the attacker and defender
can be written as

max vP(z —y) —cx (7)

T

max wl[l — P(z —y)] — dy. (8)

The first-order conditions are

vP'(x—y) = ¢ (9)
wP'(zx—y) = d. (10)
Let G(-) be the inverse function of P'(xz—y). By the second-
order condition this has to be locally decreasing, and we

will assume it is globally decreasing. We can then apply the
inverse function to write the two reaction functions:

G(c/v) (11)
G(d/w). (12)

T—y =
T—y =
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Figure 4: Reaction functions in adversarial case.

Of course, these are only the reaction functions for interior
optima. Adding in the boundary conditions gives us:

min{max{G(c/v) + y,0}, Z} (13)
min{max{G(d/w) — z,0}, 4} (14)

T
y =

We plot these reaction functions in Figure 4. Note that
there are two possible equilibrium configurations. If ¢/v <
d/w, we have z* = G(c/v) and y* = 0, while if ¢/v > d/w
we have z* = % and y* = & — G(d/w).

Intuitively, if the cost-benefit ratio of the defender is smaller
than that of the attacker, the attacker gives up, and the de-
fender does just enough to keep him at bay. If the ratio is
reversed, the defender has to go all out, and the attacker
pushes to keep him there.
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