Is finding security holes a good idea?

Eric Rescorla
RTFM, Inc.
ekr@rtfm.com

Abstract the number of intrusions—and hence the cost of intru-

A large anount of effort is expended every year on find- Sions—resulting from that vulnerability is less than if it
ing and patching security holes. The underlyiaga- ~ Were discuered by bad guys. Moreer, there will be

nale for this activity is that it increases weliaby ~ fewer vulnerabilities wailable for bad guys to find.
deceasing the number of vulnerabilities available for Thus, the prtl)Ject is to find the vulnerabilities before the
discavery and eploitation by bad guys, thugducing  Pad guys do. _

the total cost of intrusions. Given the amount &dref In this paper we attempt to determine whether vul-
expended, we would expect to see noticeabselts in nerability fln(_JI_lng is having a me_asurablefeef._ The
terms of impoved softwae quality. Howevey our value proposition just stated consists obtegsertions:
investigation does not support a substantial quality 1. It is better for vulnerabilities to be found by good
improvement—the data does not allow us to exclude the  guys than bad guys.

possibility that the rate of vulnerability finding in any 5 \yinerability finding increases total software qual-
given piece of softwaris @nstant over long periods of ity.

time If there is little or no quality impovement, then

we have no reason to believe that that the disceosur  In Sections 3 and 4, we consider the first assertion. In
vulnerabilities reduces the overall cost of intrusions.  Sections 5 and 6 we consider the second assertion. In
Section 7 we use the results of the previous sections to
address the question of whether vulnerability finding is
doing ary measurable good.

Any attempt to measure this kind of effect is inher
ently rough, depending as it does on imperfect data and
a number of simplifying assumptions. Since we are
* The Full Disclosure [1] mailing list, dedicated to |goking for evidence of usefulness, where possible we

the discussion of security holes, hadero1600  pias such assumptions iavir of apositive esult—and

postings during the month of September alone.  gypjicitly call out assumptions that bias in the opposite
« The ICAT [2] vulnerability metabase added 1307 direction. Thus, the analysis in this paper represents the

vulnerabilities in 2002. best case scenario that we were able toenfak the
usefulness of vulnerability finding that is consistent
with the data and our ability to analyze it.

1 Introduction

An enormous amount of effort igended eery year
on finding, publishing, and fixing security vulnerabili-
ties in software products.

* Microsoft Internet Explorer 5.5 alone had 39 pub-
lished vulnerabilities in 2002.

Clearly mary talented security professionals are

expending large amounts of time on the project of find-

ing and fixing vulnerabilities. This fefit is not free. It 2 Previous Work

comes at a cost to the companies funding the effort ag’he impact of vulnerability finding has been the topic
well as a significant opportunity cost since these of endless discussion on mailing lists, newsgroups, and
researchers could be doing other securitykwinstead at security conferences. In general, actual data on
of finding vulnerabilities. Gien dl of this efort, we exploitations as a result of disclosure has been rare.
should &pect to see some clearly useful and measur The major exception is Browne etsa[3] work on the
able result. The purpose of this paper is to measure thai@ate of exploitation. Brone et al. found that the total

result. number of exploits increases roughly as the square root
The basic &lue proposition of vulnerability find-  of time since disclosure.
ing is simple:It is better for vulnerabilities to be There is an densve literature on software relia-

found and fixed by good guys than for them to be bility but it is primarily targeted teards large scale
found and exploned by bad gl'IySIf a Vumerab”lty IS 1. Anotherrationale typically cited for vulnerability dis-

found by good guys and a fix is madeitable, then  o5ure is that embarrassment pressures softveargors

into producing more secure so#ive. Theres no good
empirical data for such anfeft and some anecdotal data
that vendors are unrespousi such embarrassmentn

this paper we focus only on the immediate costs and ben-
efits of vulnerability disceery and disclosure.




industrial software. The literature on sofire reliabil- » Disclosure—a description of the vulnerability is
ity mostly focuses on large fault-tolerant systems, not published.

on personal computer systems. Margpsuch studies . pypjic Exploitation—the vulnerability isxploited

typically focus on alldults, not on security vulnerabili- by the general community of black hats.
ties.

Chou et al. [4] measured the rate afgbfinding
and fixing in the Linux and BSD kernels but did not
distinguish between vulnerabilities and othaigs These eents do not necessarily occur strictly in this
They did not attempt to fit a parametric modeltb order In particular Disclosure and Fix Release often
instead used Kaplan-Meier estimation and did notoccur togetherespecially when a mana€turer disce-
attempt to compute rediseay probabilities. Their ers a vulnerability and releases the announcement
estimate of by lifetime (mean=1.8 years) is somf@t ~ along with a patch. @ ae most interested in tw
shorter than ours, but thesee a generally similar potential scenarios, which we tewhite Hat Discuo-
curve. Unfortunatelyit is not possible to directly com- ery (WHD) andBladk Hat DiscoveryBHD).
pare Chou et &. results with ours because wevha
extensve_f_an_d unmeasura_ble censoring (i.e., if tr_\ere areg3 1 \White Hat Disco very
vulnerabilities that persist past the study period, our
technique does not kmoabout them at all). Hoever,

Fix Release—a patch or upgrade is released that
closes the vulnerability.

In the White Hat Disceery scenario, the vulnerability
for the tvo programs for which we he long time is di_sg:(yefed by a researcher Witl‘.]. no interest in
baselines, thus partially ameliorating the censoring (NTepromng_ It. The researcher then notifies trendgor—
4.0 and éolaris 2.5.1), we find a much slower decayOﬁen he is an emp}@e of the \{endor—and theWor

' e releases an advisory along with some sort of fix. Note

curv_e”l:wea?hzoourggckgll vc\:/g:)ku(fr: al. finding is also sparse that it is of course possible for an advisory to be
Uy 9 P " released prior to a fix but this is no longer common

In [5] and [6] Anderson presents a theoreticaguar practice. During the rest of this papere will assume

ment using reliability modeling that suggests that A that fixes and public disclosures occur at the same time.

(n6 attackr rather than the defender bevause i 1 casiell! 1S scenario, Disclosure and Fix Release happen
. . i simultaneouslyas he entire wrld (with the &ception
to find a single bug than to find all of them. Thus, the Y ( b

defender needs to work much harder than a dedicateaf the discoerer and vendor) finds out about the vul-

attacler in order to pneent a single penetration. In a erability at the same time. There is novad
P gie p . Exploitation phase. Public Exploitation dies at the
related papeBrady et al. [7] argue that reducingds . .
i 4 . A . time of Disclosure.
through testing quickly runs into diminishing returns in
large systems once the most obviougd (and hence
vulnerabilities) are remad.

Anderson et al. do not, hvaver, address the ques-
tion of disclosure or whether attempting to find vuiner
abilities is worthwhile. Answering these questions L
requires addressing empirical data as we do in thgaching
paper As far as we kne, we ae the first to do so.

Inerable Machines

Public Exploitation—— ntrusion Rate

3 The lif e cycle of a vulnerability
In order to assess thalue of vulnerability finding, we

Time——-

must examine thevents surrounding diseery and Introdgcti n
disclosure. Seeral authors, including Brene et al. [3], .Dlsco/er .
and Schneier [8] ha wnsidered the life cycle of a Disclosure/Fix Release

vulnerability In this paper we we the follaving
model, which is rather similar to that described by
Browne.

Figure 1 White Hat Discoery process when disclosure and
fix release occur together

. e Figure 1 shows the sort of process we expect to see.
Introduction—the vulnerability is first released as The bottom cure shows the number of intrusions as a
part of the software. function of time. As the vulnerability is not kwa to
*  Discovery—the vulnerability is found. attaclers prior to Disclosure, there are no intrusions up
«  Private Exploitation—the vulnerability isxgloited to this time. At Disclosure time the Public Exploitation

by the discwerer or a small group known to him. phase begins and we start to see intrusions. The rate of



intrusions increases as the knowledge af tmexploit Figure 2 shars what we expect to see. The pri-
the vulnerability spreads. Ewtually people fix their  mary difference from Figure 1 is that there is a nonzero
machines and/or attagfs lose interest in the vulnera- rate of eploitation in the period between Disay
bility—perhaps due to decreasing numbers of vulnera-and Disclosure. It is an open question jusivHarge
ble machines—and the number of intrusions goesthat rate is. It is almost certainly less than the peak rate
down. after disclosure since the Yaie Exploitation commu-

The top line shas the fraction of potentially vul-  nity is a subset of the total number of atersk In Fig-
nerable machines. &/an model this as roughly con- ure 2 we hee own it as quite a bit smalleiThis
stant up until the time of Disclosure.eV#e assuming seems likely to be the case, as yn#ite Hat security
that a fix is released at Disclosure time and thereforeresearchers are connected to the Black Hat community
the number of vulnerable systems starts to decline atand so lage scale exploitation would likely be diseo
this point. In most situations, the time scale of this ered quickly There is no good data on this topict b
decline is ery long, with substantial numbers of some observers W@ estimated that thevarage time
machines still vulnerable months after the disclosure offrom discwery to leak/disclosure is on the order of a
the vulnerability [9]. In emWironments where a vulnera- month [11].
bility is very actively exploited (the Code Redosm,
for instance), there is more seleetjressure and fixing
occurs more rapidly [10].

The rate of intrusion is the result of the interaction
of two processes: the Vel of interest in exploiting the

acLine

vulnerability and the number of vulnerable machines. Inerable Machines
The level of interest in gploiting the vulnerability is at
least partially determined by the toolsvaitable.
Browne et al. [3] report that when only the description

of the vulnerability is wailable the rate of intrusion is

Public Exploitation—— ntrusion Rate

,,,,,

relthe!y low but that it increases_ dramatically Wit_h_ the introduct Time
availability of tools to exploit the vulnerability — 'Ntroduction
Whether the wentual decline in intrusions is a result of Discover

a cdecreasing number of vulnerable systems or of Disclosure/Fix Release
attaclers simply moving on to meer and more>iting
vulnerabilities is unknan. It seems likely that both
effects play a part.

Figure 2Black Hat Discwery Process

3.3 The cost of a vulnerability
The Discwery of a vulnerability imposes wvprimary
types of costs on users and administrators: fixing and
intrusions. If an administrator opts to apply whate
fix is avalable, this imposes costs both in terms of
administrator personnel time and potential system
downtime. If an administrator opts not to apply a fix
then there is some risk that their systems will suffer an
intrusion, which entails emgengy response, cleanup,
system downtime, and potential destruction, corruption
or theft of data.

In Figures 1 and 2, the cost of fixing is represented
%y the difference between the starting and endalg v
ues of the number of vulnerable machines—in other
words the number of fes that are applied, since the
cost of fixing is ‘ery roughly proportional to the num-
ber of machines that must be fixed. For the purposes of

3.2 Black Hat Disco very
In the Black Hat Disceery scenario, the vulnerability
is first discoered by someone with an interest in
exploiting it. Instead of notifying the endor he
exploits the vulnerability himself and potentially tells
some of his associates, who algpleit the vulnerabil-
ity. The information about the vulnerability circulates
in the Black Hat communityThus, during this period
of Private Disclosure, some limited pool of in-the-kno
attaclers can exploit the vulnerabilityubthe popula-
tion at large cannot and the vendor and users ar
unaware of it.

At some time after the initial Disgery, someone
in the public community will disoger the vulnerability
This might happen independently but seems more

likely to happen when an attackuses the vulnerability this paperwe ae principally concerned here with the

to exploit some systemamed by anware operatarAt ; . . .
. ) . . cost of intrusion. If we assume that fixing rate is
this point, the finder notifies the vendor and the process

) . . . . roughly the same in both scenarios, then the cost due to
described in the previous sectiorghes (assuming that .- : . . S
o fixing will also be similar The cost of intrusion is
the announcement of the vulnerability and the release
! . related to, but not totally controlled by the area under
of the fix happen at more or less the same time.)



the under the intrusion rate cervClearly some 4 Cost-Benefit Analysis of Disclosure
machines are morealuable than others and therefore Imagine that you are a researcher who is the first per
their compromise will hee a geater cost. \& expect son anywhere to diseer a wlnerability in a widely
that Black Hats will preferentially attack high value-tar used piece of software. Youvsathe option of keping
gets and that those high value targets will be fixed rela-quiet or disclosing the vulnerability to thendor If
tively quickly. Therefore, we might g@ect that the  you notify the vendor the WHD scenario of Section 3.1
machines compromised during thevpie exploitation will follow. If you do not notify the endor a Black
period will be more valuable in general than those Hat may independently diseer the vulnerability thus
compromised during the public exploitation period. initiating the BHD scenario. Heever, there is also
Overall, this is probably true, h@ver, even high value some chance that the vulnerability willvee be redis-
targets often ta days or weeks to fix and therefore covered at all or that it will be rediswered by another
there will be substantial exposure right after Disclo- White Hat. In the first case, the cost of disclosure will
sure. Because most of the Black Hat communitglyik  never be incurred. In the second, it will be incurred
does not kne about a gven vulnerability the period  later Either outcome is superior to immediate disclo-
just after disclosure (when the rest of the Black Hatssure.

find out as well) will hae denty of nev opportunities Consequentlyin order to assess whether disclo-
for attacks on high value targets. In addition, when asure is a good thing or not we need to estimate the
worm is aailable it will generally not discriminate probability of the following three outcomes:

between high and fovalue targets. 1. The vulnerability is neer rediscaovered ()

2. The vulnerability is redisaered by a White Hat
3.4 WHD vs. BHD (Puhd)
It seems intuitiely obvious that if one has to choose . The vulnerability is redisa@red by a Black Hat
between the BHD and WHD scenarios, one should pre- (Pona)
fer WHD, as WHD eliminates the period of \Rie .
Exploitation. As a first approximation, we assume that We nsider a "worst-case” model: assume that all

except for this difference the WHD and BHD scenarios Potential redisceery is by Black Hats and denote the
are identical. Thus, the cost amage of WHD wer probability of redisceery as p,. Consistent with our

BHD s the cost incurred during the Wtie Exploita- practice, this simplifying assumption introduces a bias
tion phase. If we denote the cost ofvete Exploitation in favar of disclosure. The only way in which failure to

as Cpyy and the cost of Public Exploitation &, disclose does harm is if the vulnerability is redisco_.
then the cost of intrusions in the WHD scenario is €r€d by & Black Hat. Thus, assuming that vulnerabili-
given by: ties are albays rediscwered by Black Hats eresti-
mates the damage done by redigey and therefore
Cwhb = Cpub (1) the advantage of disclosure. Using standard decision
and the cost of intrusions in the BHD scenario is: theory (see, for instance [12, 13]) we get the choice
matrix of Figure 3.
CBHD = Cpriv + Cpub (2)
The advantage of WHD is Not Redisco- Redisceered
ered @null) (pr)
Cgrp ~ Cwhb = Cpriv 3) Disclose Coub Coub
Not Disclose 0 Couw + Chpriv

Obviously this approximation is imperfect and proba-
bly overestimates the cost tifence. First, administra- Figure 3Disclose/not disclose decision matrix
tors are likely to be more diligent about patching ifithe

know that a vulnerability is being avtly exploited.  \yoring through the math, we find that the choice to

Thus, the total number of vulnerable systems will yisejnse only reduces thapected cost of intrusions if:
decline more quickly in the BHD scenario and the peak

rate of disclosure will be correspondinglyvier. Smi- Pr (Cpriv + Cpub) > Cpub (4)
larly, some of the "early exploiters" immediately after

Disclosure are ligly part of the Priate Exploitation [N order to justify disclosing, then, thepected cost of

community and therefore Disclosure will dily not ~ €XCess intrusions in the case of BHD has to bgelar

produce as lge a rise in initial exploitation in the €nough to outweigh the knm cost of intrusions

BHD case as in the WHD. Maever, the simple and incurred by disclosing in the first place. The rest of this
conservatie proach is to ignore these effects. paper is concerned with this question.



5 From finding rate to  p, vulnerabilities are fixed and other vulnerabilities are
In order to attack this problem, we neakne further introduced. What we wish to consider here is rather
simplifying assumption: that vulnerability diseay is individual releases of software.olF instance, when

a dochastic process. If there are a reasonable numbelFreeBSD 4.7 was shipped, it had a certaiedinum-

of vulnerabilities in a piece of sofawe, we dort’ ber of vulnerabilities. During the life of the sotive,
expect them to be diswered in ay particular order some of those vulnerabilities were dige@d and
but rather that ap given extant vulnerability is equally  patches were puided. If we assume that those patches
likely to be disceered net. Note that this assumption never introduce ne vulnerabilities—which, aain,

is not favorable to the hypothesis that vulnerability favors the agument for disclosure—then thevepall
finding is useful. If, for instance, vulnerabilities were quality of the softwre gradually increases. eNae
always found in a gien order, then we would ®pect interested in the rate of that process.

that a vulnerability which is not immediately disclosed
will shortly be found by another researchidoweve,

th|s S|mpllf|cat|on IS probably_approxlmf’:\tely correct— The literature on modeling sofare reliability is
since different researchers will probefeiiént sections .
extremely etensve axd a lage number of models

of ary given program, the vulnerablhjtles thefind exist. No model has yet been found suitable for alt pur
should be mostly independent—and is necessary for

. ‘ . ! oses, but the dominant models for saftevreliability
our analysis. Using this assumption, we can use th : .
S . are stochastic models such as the Homogenous Poisson
overall rate of vulnerability disogery to estimatep, .

Consider a piece of sofawe S containinaV... vul- Process (HPP) models and Non-Homogenous Poisson

P : Val Process models such as Goel-Okumoto (G-O) [14],

nerabilities. Oer the lifespan of the software, some Generalized Goel-Okumoto (GGO) [15], and S-shaped
subset of thenViy,,q Will be discovered. Thus, the ' P

o r - . . model [16].
Ilkellhooq that an given vulnerab|I|t_y W.'" b_e disce- In this contat, reliability is defined as the number
ered during the life of the software ivgh by:

of failures (vulnerabilities) obseed during a gien
time period. Thus, if a system is getting more reliable,
that means that Weer failures are being observedrF
simplicity, these models assume that all failures are
equally serious. Roughly speaking, there are three
classes of models depending on therall trend of

6.1 Modeling Vulnerability Disco very

V found
pdiscovery = VOl:In (5)
ai

Similarly, if we pick a vulnerability that has just been
discovered, the chance of redisawy has as its upper
bound the chance of disasy:

failures:
Vfound
Pr = Pdiscovery= v (6) Trend Models
all
. . Reliability gronth G-Oand Generalized G-O
A-c.c.ord|-ngly if we know the number of tOtall vulnera- Reliability decay followed by greth  Log-logistic/S-shaped
bilities in the software and the rate at whichytlaee Stable reliability Homogenous Poisson Process

found, we can estimate the probability that a vulnera-

bility will be rediscavered aver any gven time period. Figure 4Trend and corresponding models
The problem therefore becomes to determine these tw (after Gokhale and Tredi[17])
parameters. We ae primarily interested in models where reliability

is increasing, since only those models predict a finite
number of wvulnerabilities. If reliability does not
increase, then the projected number of vulnerabilities is
effectively infinite and the probability of rediseery in

ary given time period must be verywo The simplest
such model is the Goel-Okumoto Non-Homogenous
Poisson Process model, which we describe here.

In the G-O model, the number of vulnerabilities
discovered in a single product per unit timd(t) is
assumed to follw a Poisson process. Thexpected
value of the Poisson process is proportional to the num-
ber of undisceered vulnerabilities at. The result is
that the expectedalue cure follows an &ponential
decay cure of the formrate = Nbe™, whereN is the
h total number of vulnerabilities in the product ani a

6 The Rate of Vulnerability Disco very
We @n measure the rate of vulnerability disay
directly from the empirical data. Using that data and
standard software reliability techniques we can also
derive an estimate for the number of vulnerabilities.
The procedure is to fit a reliability model to the empiri-
cal data on vulnerability diswery rate, thus deving
the total number of vulnerabilities. The model also
gives us he projected vulnerability finding rateves
time and therefore the probability of vulnerability dis-
covery at aly given time.

For our purposes, i§ important to be specific
about what we mean by a "piece of saite/'. Real
software undergoes multiple releases in whic



rate constant. As more vulnerabilities are found the
product gets progressly more reliable and the rate of
discovery slows down.

Chou et als results [4] preide general confirma-
tion that this is the right sort of model. Their studies of
bugs in the Linux kernel found a siodecay cure with
a mean bug lifetime of 1.8 years. It is widely bekd
that security vulnerabilities are more difficult to find
than ordinary bgs because ordinary bugs often cause
obvious failures in normal operation, whereas vulnera-
bilities are often difficult to xercise unintentionally
and therefore must be found by auditing or other forms
of direct inspection. Thus, while we cannot use their
results directlythis correspondence provides an indica-
tion that this sort of model is correct.

Given the G-O model, the probability that a vul-
nerability will be discwered in a g¥en time period is
thus equal to the fraction of the area under phg)
curve during that time period. Wan estimatep, (t) by
the following procedure: First, we fit amponential of
the form Ae? to the cure of wilnerability discoery.

We @an then easily find the total number of vulnerabili-

ties by integrating:
N = edt= Ag

t

“ A
3 ™
=0

In order to compute the probability that a vulnerability
will be found wer any dgven time period {,t + At), we
first normalize by dividing ouN. This gives Ls:
to+At
o8 (toyAt) - J‘ 5 e—t/Bdt - e—t/B _ A (t+AT)/e (8)

=

[2]. ICAT is run by NIST which describes it as fol-
lows:

The ICAT Metabase is a searchable aé com-
puter vulnerabilities. ICA links users into aari-
ety of publicly aailable vulnerability databases
and patch sites, thus enabling one to find and fix
the vulnerabilities x@sting on their systems. ITA

is not itself a vulnerability databaseythis instead

a sarchable inde leading one to vulnerability
resources and patch information. [CAlows one

to search at a fine granularityfeature unaailable
with most vulnerability databases, by characteriz-
ing each vulnerability by wer 40 dtributes
(including software name and version number).
ICAT indexes the information wailable in CER
advisories, ISS X-Force, Securitpdus, NT Bug-
traq, Bugtraq, and aaviety of vendor security and
patch hilletins. ICAI does not compete with pub-
licly available vulnerability databases but instead
is a search engine that\s traffic to them. ICA

is maintained by the National Institute of Stan-
dards and @chnology ICAT is uses and is com-
pletely based on the CVE vulnerability naming
standard (http://cve.mitre.org).

ICAT makes the entire databaseadable for public
download and analysis, which made it ideal for our
purposes. Our analysis is based on the May 19, 2003
edition of ICAI. We downloaded the database and then
processed it with a variety of Perl scripts. All statistical
analysis was done with R [1§].

6.2.1 Vulnerability Disco very Rate by Cal-
endar Time

We ae particularly interested in the probability at time The simplest piece of information tateact is the rate
t that a vulnerability will be found in the next time of vulnerability disclosureer time. ICAT lists a "pub-
period At. Since an &ponential is memoryless, this lished before" date for each vulnerabilityhich repre-
probability is the same no matter what the age of thesents an upper bound on publicatioar #Fulnerabilities

vulnerability and is gien by equation (9).

pr(at) =1-*T (9)
Note that this assumes that all vulnerabilities vwiére
tually be found. Agin, this assumption is¥aable to

the argument for disclosure. If there are vulnerabilities
in program X which remain unfound because interest
in program X vanes, then this model willver-predict

p, and therefore werestimate the left half of equation
(4), making disclosure seem more desirable.

6.2 Measured Vulnerability Disco very
Rates

In order to measure the actual rate of disop of vul-

nerabilities, we used the IGAvulnerability metabase

prior to 2001, the "published before" date is the earliest
date that the ICA maintainers could find. For vulnera-
bilities after 2001, the date is when the vulnerability
was aded to ICA. The maintainers attempt to add
vulnerabilities within a week of CVE or CAN ID
assignment (candidate (CAN) assignment is generally
fairly fast but vulnerability (CVE) assignment is often
quite slav). In general, "the published before" date
appears to be within a month orawf first publication.
This introduces a modest amount amount of random
noise to our data but otherwise does not substantially
impact our analysis (see Section 6.8.2 for sefitsiti
analysis). Figure 5 shows the rate of vulnerability dis-
covery by month.

2. Researchernsiterested in obtaining a cppf the rav
or processed data should contact the author.



o - information for all of the listed programsaept AlX,
_ Oracle, Imail, Unixware, Firgal-1, and 10S. These
o )
o 3 programs were omitted from study.
om
? n Vendor Program Vulnerability Count
[) o _|
g ™ * Oracle Oracle9Application Serer 20
=} — . .
z * Conectia Linux 20
S Microsoft Windows ME 20
© : : Zront : | * | pswitch Imail 20
1985 1990 1995 2000 Microsoft Outlook 21
Microsoft OutlookExpress 22
. Publish Date N _ Apple MacOSX 22
Figure 5The rate of vulnerability diseery * Oracle Oracledi 23
. . . .. ISC BIND 25
As is apparent from Figure 5, there is substantaby
. . k .. MIT Kerberos 5 25
tion in the rate of disclosure.aR of the wariation sco oni ”
0¥ nixware
appears to be due to the fact that batches of vulnerabili- ,
. . . Slackware Linux 27
ties are often found togethdfor instance, in month COE VOE »r
211, a batch of 9 vulnerabilities (out of 51 that month) Net . cat »r
. . . elscape ommunicator
were found in Bugzilla. The peak at month 179 is less P ) ,
s . * Check Point Softare  Firevall-1 29
clear but a large number of vulnerabilities in that Mol Bucl ”
. . . ozilla ugzilia
month were inserted at 12/31/1999, so most likely this orac og o8 ”
. . . _*Oracle racle8i
is an artifact of end-of-year cleanup. Cursory analysis
. . . . .- Apache Group Apache 32
yields no other obvious patterns in the variation. _
. . Caldera OpenLinux 35
Unfortunately for our purposes, this representation
. . Microsoft Windows XP 36
of the data isrt’that useful. Since each progranasw BSD! BSDIOS .
released on a separate date, the g&sgaate by calen- o oS a8
. . L. . * Cisco
dar time is a superposition of the digexy curves for a ‘
. Microsoft SQLSener 42
large number of programs. Each program haswse o
. . . . Microsoft Wndows 95 42
discovery curve with the clock starting at the time of sco Oners i
. eroener
release. & do ketter we need to takinto account the . « V\Apd o8 e
. . . o . ICroso ndows
time of introduction of the vulnerability into the code )
MandraleSoft Linux 51
base. i ,
Linux Linux kernel 54
S.u.S.E. Linux 65
6.2.2 Finding Affected Programs OpenBSD OpenBSD 68
The ICAT database does not list the time when a vul- sun Sunos 68
nerability was introduced into the code. Wever, it NetBSD NetBSD 70
does prwoide the programs and version numbers which Debian Linux 88
are affected by the vulnerabilittVe can use this as a  Microsoft ns 100
proxy for the time when the vulnerabilityas intro- *1BM AIX 122
duced by using the release date of the earliésttatl SGl IRIX 133
version. Microsoft Windows 2000 134
The lage number of programs in the ITA  Microsoft InterneExplorer 140
database made finding release dates for all of them pro+p HP-UX 142
hibitive. Instead, we selected the programs with the FreeBsD FreeBSD 152
largest number of vulnerabilities. Somewhat arbitrarily Microsoft Windows NT 171
we chose 20 vulnerabilities as the ctitpbint. This RedHat Linux 183
gave s the list of programs in Figure 8Note that the  sun Solaris 192

vulnerability counts here are purely informational
because theare aggrgaed by program, gardless of
version. Throughout the analysis we will be handling

each version as separatee Were able to find release Data Cleansing

3. Note,this table was generated beforeg @ata cleans-
ing was done, so there may be small misalignments with
the later analysis

* indicates release data netitable.

Figure 6 Programs under study

Once we had identified the programs we wished to
study we diminated all vulnerabilities which did not



affect one of these programs. This left us with a total of period, and so we kia both left and right censoring.

1678 vulnerabilities. \& manually went ger each vul-

In order to provide ralstness against these con-

nerability in order to detect obvious errors in the TCA founding factors, we analyze the data froro taugles:

database. Widentified three types of error:

The prograns eye view in which we &amine all

1. Olvious recording errors where the description of
the vulnerability did not match the recordeer-v
sion number or thereas some obvious typograph-
ical mistale suich as a nonexistent version number
(n=16). W& oorrected these before further process-
ing.

Vulnerabilities where the textual description read
"version Xand earlief but the list of affecteder-
sions was incomplete (n=96).8/fhgged these vul-
nerabilities for future analysisub did not correct
them. Note that this source of error reakulnera-
bilities appear younger than there. This creates

a false appearance that vulnerability dizsy
rates decrease morgep the age of the vulnerabil-
ity thus overestimating the value of disclosure.

been a recording error (e.g. throughteenal
knowledge) but the database did not whdt
(n=31) Most of these were insufficently broad pro-
gram assignments.oF instance, CVE-2001-0235
[19] and CVE-1999-1048 [20] describe vulnerabil-
ities that probably #&kct a broad number of
UNIXes but were only assigned to awfeWe
tagged these vulnerabilities for future analysis b
did not correct them.

The most serious problem with the data we fourd w
that may programs were listed with "." as thdexted
version. This means that I0Adid not knav which ver-
sions were affected. In some cases, 'a$Wisted along
with explicit version numbers, in which case we simply
ignored the "." entryln cases where the onlyfatted
version was "." that program was ignored (though the
vulnerability was retained as long as sonadidvpro-
gram could be found).dlthe extent to which this pro-

Vulnerabilities where we suspected that there had

the vulnerabilities in a gen version of a specific
program, rgardless of when the vulnerabilityas
introduced.

* A vulnerability’s eye view in which we e&amine
the time from vulnerability introduction to vulrer
ability discorery, regadless of which programs it
was in.

We first consider data from the perspeetid each
affected program.

6.4 A Program’'s Eye View

The obvious question to ask is "What is the rate at
which vulnerabilities are found in avgh program."

For example, consider Microsoft Wdows NT 4.0,
released in August 1996. NT 4.0 had a fixed set of vul-
nerabilities, some already present in earlietisiens,
most introduced in that releasee\tan then ask: o
mary of those vulnerabilities are found as a function of
time. Because this s us a fked garting point, this
approach is susceptible to righttinot left censoring.
However, it has two major problems:

1. Because the same vulnerabilities appear in multi-
ple programs and multiplesysions, it is not possi-
ble to analyzeery program as if it were an inde-
pendent unit.

Any individual program is not ligdly to hae that
mary vulnerabilities, thus giving us \o statistical
power.

2.

In order to keep the amount of interaction to a mini-
mum, we focus on four progranefsion pairs, tw
open source and twdosed source. These pairs were
chosen to minimize interaction, while still allowing us
to have a hige enough data set to analyze. For instance,

cedure introduces error it makes vulnerabilities appeariye chose only one of the ikMiows/IE group, despite
younger than thein fact are and therefore biases the there being large numbers of vulnerabilities in both

data in &var of the efectiveness of vulnerability find-  Windowvs and IE, because thedveets of vulnerabili-
ing. Section 6.8.1 contains the results of our attempts tqjes are highly related.

compensate for this problem.

6.3 Estimating Model Parameters

Using the ICA data, we attempted to deei the model
parameters. There are a number of confoundiatpfs
that male this data difficult to analyze. First, manul-
nerabilities appear in multiple programs aretsions.
Thus, it is dificult to talk about "vulnerability density"
in a given program, since neither programs nor vulnera-
bilities are totally independent. Second, vulnerabilities

were introduced both before and during the study

Note that in this case the age being measured is the
age of the program, not the age of the vulnerability
Thus, if a vulnerability was introduced in Solaris 2.5
but is dill in Solaris 2.5.1, we're concerned with the
time after the release of Solaris 2.5.1, not the time since
first introduction in Solaris 2.5. Note that if thegb
finding process is not memoryless, this biases the
results so thatug finding appears morefe€tive than
it actually is, as ivestigators hae dready had time to
work on the bugs that were present in earliersions.
Conservatiely, we ignore this effect.



Vendor Program Version  #Wulns  Releas&onth
Microsoft  Windows NT 4.0 111 August 1996
Sun Solaris 251 106 May 1996
FreeBSD FreeBSD 4.0 39 March 2000
RedHat Linux 7.0 51 August 2000

Figure 7Programs for analysis
Figure 8 shows the vulnerability disey rate for each

Linear Fit Exponential Fit
Program Slope Std.Err. p @ Std.Err p
Windows NT 4.0| .0586 .107 589 -
Solaris 2.5.1 -.0743 .0529 171 485 3438 174
FreeBSD 4.0 -.308 .208 167 121 11.0 .292
RedHat 7.0 -.627 423 172 972 9.35 .325

Figure 9Regression results for program cohort data

program as a function of age. For the moment, focus on

the left panels, which skothe number of vulnerabili-
ties found in ap given period of a prograns life
(grouped by quarter). isually, there is no apparent
downward trend in finding rate for Wdows NT 4.0
and Solaris 2.5.1, and only a very weak one ({) dor
FreeBSD. This visual impression is produced primarily

An alternatve gproach is to use the Laplacacfor
trend test [21]. The Laplace factor test assumes that
data is being produced by a Poisson process and checks
for homogeneity of the process. Laplace factiugs

with greater than 1.96 (indicated by the top dotted
lines) indicate significantly decreasing reliability

by the peak in quarter 4. RedHat 7.0 has no visually(increased rates of vulnerability finding) at the 95%

apparent downward trend.

Windows NT

15
I

1‘0
-2 0 2
£ 1 i

5
T
Laplace Factor

Number of Bugs

-4
I

0
I

T T T T T
0 5

T T T T T
10 15 20 25 30
Program Age (Quarters)

o 15
Bug Age (quarters)
Solaris 2.5.1

15

2
f

i

Number of Bugs
T
Laplace Factor
B

0
1

o
0%

T T T T T
10 15 20
Bug Age (quarters)

T T T T T
5 10 15 20 25
Program Age (Quarters)

T
0

BSD 4.0

lp 1‘5
Laplace Factor
29 3

Number of Bugs
5
T

-4

v

°

0
1

T T T
10 15 20 30 0 5
Bug Age (quarters)

T
10 15 20
Program Age (Quarters)
RedHa

t Linux 7.0

1‘0 1‘5
2
i

[}
1

s

-2
I

5
I

°

Number of Bugs
Laplace Factor

-4
L

0o
°

g

0
1

© 15 2 2 3

Bug Age (quarters)

0 [

h 15 2 2

Program Age (Quarters)

Figure 8Vulnerability discoery rate by programs

Moving beyond visual analysis, we can apply a number 1

of statistical tests to look for trends. The simplest pro-
cedure is to attempt a linear fit to the data. Alternately

we can assume that the data fits a Goel-Okumoto

model and fit an »@onential using non-linear least-
squares. Neither fit veals aly significant trend. In
fact, the data for \Mdows NT 4.0 is so irregular that
the non-linear least-squares fit for th&penential
failed entirely with a singular gradient. The results of
these regressions are sho in Figure 9. Note the

extremely large standard errors and p values, indicating

the lack of ay clear trend.

level (two-tailed). Values belw -1.96 (the bottom dot-
ted line) indicate significantly decreased rates of vul-
nerability finding. The results of the Lapla@etor test
are shown in the right hand set of panels. The Laplace
factor only indicates a statistically significant increase
in reliability at the ery end of each data set. Inwief
the amount of censoring we are observing, this cannot
be considered reliable.

Based on this data, we cannot reject tygolthesis
that reliability of these programs is constantrall,
and certainly cannot confirm that it is increasing. If
arything, it appears that reliability decreases sohst
initially, perhaps as a result of increased program
deployment and thereforexposure to vulnerability dis-
coverers.

6.5 A Vulnerability’ s Eye View
The other option is to start from the point of vulnerabil-

ity introduction and ask what the probability is that a
vulnerability will be discuered at ag timet after that.

In order to analyze the data from this perspective
first need to determine when a vulnerability was first
introduced. & wsed the following procedure to deter
mine the introduction date for each vulnerability:

Determine the first version of each program to
which the vulnerability applies. 8/dd this by
numeric comparison of version numbers. Where
affected versions were listed as "and earlier", "pre-
vious only" (applies to ersions before the listed

version), etc. we used the earliest known version.

2. Look up the release date for each such earlist v
sion. Where release dates were ndgilable, the
program was ignored.

3. Select the program/version pair with the earliest

release date (there may be multiples, for instance
when a program appears in multiple Linuxes). If
no such date as a&ailable, we ignored the



vulnerability This problem occurred for approxi- Finally, in some situations we were unable to get
mately 110 vulnerabilities. An alternasi roce- precise release dates. The finest granularity we are con-
dure would be to look for a later version of the cerned with is a month and so as long as wevkimhe
same package. Sectiorpdores this approach with release month that is $igfently precise. In <15 cases,
essentially similar results to those presented here. all prior to 1997, we were able to get dates only to year
resolution. V¢ abitrarily assigned them to the month
This procedure is susceptible to a number of forms ofof June, because that was the middle of the. ymw-
error We lriefly introduce them here, and will discuss eve, as aur year cohorts fggn in 1997, this should
them further in the course of our analysis. First, the ha/e o effect on the analysis of this section or of Sec-

ICAT database has errors. As notedvimesly, we ©r-  tjon 6.4. Figure 10 shes the number of vulnerabilities
rected them where possible. Wever, there are almost  py time of introduction. Note the twhig peaks in mid
certainly less olious residual errors. In particujaul- 1996 and early 1998. These correspond to the release

nerability finders often seem to only check recemt v of Windows NT 4.0 and 1S 4.0 respeeliy.
sions for a vulnerabilityThus, \ersions 1.0 through 4.0
may be affected but onlyewsions 3.0-4.0 might be
reported. V& would expect this effect to makulnera-
bilities look more recent than then fact are. W
ignore this effect, which mals vulnerability lifetime
appear shorter and therefore the vulnerability depletion
rate appear highgthus fivaring disclosure.

Second, it is not clear toto categgorize vulnera-
bilities which appear in multiple programs. A vulnera-
bility may affect more than one program for a number == : : ,
of reasons: 1985 1990 1995 2000
1. It may be present in a common ancestor of both Introduction Date

programs, such as BSD 4.4 vulnerabilities which gjqre 10 Number of vulnerabilities by year of introduction
appear in both NetBSD or FreeBSD.

2. A package may be included in multiple operating 6.5.1 Vulnerability Production rate by Age
systems. For instance, GCC is included in both Figure 11 shas the number of vulnerabilities found by
Linux and *BSD. age of the vulnerability at time of disamy. There is a

3. Multiple programmers may ke made the same fairly clear davnward trend, which might be indiceé
mistale. For instance, both KDE and Internet ©f depletion. Havever, note that this data isxeemely
Explorer filed to check the X.509 Basic Con- Subject to sampling bias, as our data is from the limited
straints  extension and are listed in time windov of 1997-2002. Because weprograms are
CAN-2002-0862 [22]. introduced during this period, and therefore cannot

have wlnerabilities older then fev or so ars, we

Xvould expect to see fewer older vulnerabilities than

newer vulnerabilities. In addition, if popularity of pro-

grams is a partialatctor in hav aggressiely programs
are audited, we would expect interest in programs to
wane oer time, thus producing the appearance of
increasing reliabilityFinally, as b evident from Figure
10, the rate of vulnerability introduction is highlgni

Number of Bugs
20 40 60 80 100
|

0

Situation 3 appears to happen quite rarely so we simpl
ignore it and treat it as part of our experimental error
In situation 1 it seems appropriate to treat the first
appearance iany package as the date of vulnerability
introduction. In situation 2, we might wish to treat pro-
grams which are packagestmot part of the operating
system separatelyVe have not currently done soub

consider it a topic for future work (see Section 6.8.4). able wer time. As all these factors tend toemestimate

We dso det_ect_ed 24 vulnerabilities whe_re the e?r"' the depletion rate, fitting the data directly is problem-
est knavn publication date preceded the introduction _..

date. In some cases, this is no doubt a result of vulnera-
bilities which are present in someergion lumped
under "unknwn". In others, thg are simply data
errors. Vi dscarded these vulnerabilities. At the end of
this procedure, 1391 vulnerabilities remained.



Number of Bugs
20
|

10

T
50

T T
100 150

Age of Bug (months)
Figure 11 Discovered vulnerabilities by age

6.5.2 Disco very rate by year cohort
One way to minimize the sampling bias mentioned same kind of sampling bias. For instance, only pro-

above is to look only at vulnerabilities from fairly nar
row age cohorts, such as a single yéagure 12 shws

Linear Fit Exponential Fit

Year | Slope Std.Emr. p 6 Std. Err p

1997 | -.107 .102 307 684 874 443
1998 | -.319 .218 .160 408 335 .240
1999 | -1.25 .218 <01 946 193 <.01
2000 | -1.04 .493 .0565 16.7 11.6 175

Figure 13 Regression results for age cohort data

Similarly, the Laplace Factor only shows signifi-
cant increases in reliability for 1999 and the last 2-quar
ters of 1998 and 2000 (where it crosses thgane
dotted confidence boundary). The last 2 quarters of the
1998 and 2000 data should be disrded because the
data from those quarters istemely subject to the

grams which were published in the early part of 2000
could possibly hee wlnerabilities that were as old as

the distribution of vulnerability ages for vulnerabilities 36-42 months by the end of the study period.

introduced in the years 1997-2000, in the same format

as Figure 8.

Once again, we can see that there is naoois
visual trend, except possibly in vulnerabilities intro-
duced in 1999. Our gegessions confirm this. Both lin-
ear regression and ouxponential fit sher no dgnifi-
cant ngaive tend for ay year but 1999. The results
are shown in Figure 13. Note thery large standard
errors and p values fovery regression except than
1999 and the linear geession for 2000 (which is sub-

ject to a large amount of censorship).

Bugs introduced

n 1997

o. %o

o] 00 00°° %0,
o °

0o o o ©°°

Number of Bugs

2
i

Laplace Factor
=2 0

o

-4
h

o
o ©0

~NL

T
15

T
0 10
Bug Age (quarters)

T T
20 25

Bugs introduced

T T
0 20

10 1
Bug Age (quarters)
n 1998

25

Number of Bugs
P 2, P
o

o

0
1

Laplace Factor
B A

o
o
4

N

Bug Age (quarters)

Bugs introduced

T T T T T
0 5 10 15 20

Bug Age (quarters)
n_1999

25

Number of Bugs
P, 2, P
o
o
o
o
o

0
1

2
I

Laplace Factor
2 9

-4

o
b b 5

Bug Age (quarters)

L

Bugs introduced

§ 3 1 5 %
Bug Age (quarters)
n 2000

25

0

Number of Bugs
PP, 2 3
o
o

0
I

Laplace Factor
29 3

-4
1

Bug Age (quarters)

20 25

T T T T
] 5 10 15 20
Bug Age (quarters)

25

Figure 12 Vulnerability discwery rate by age cohorts

The lack of a significant trend in the cohort data
should mak us giite skeptical of the claim that there is
indeed a trend wards increasing reliabilityThe data
does not allev us to dscard the hypothesis that the vul-
nerability finding rate is essentially constant.

6.6 What if we ignore the bias?

In the preious sections, we analyzed cohort-sized sub-
sets of the data in order to attempt to reendias.
However, this also had the effect of reducing the size of
our data set and therefore the statistical/groof our
technigues. What happens if we ignore the bias and
simply use the entire data set as-is? As we indicated
previously this overestimates the amount of vulnerabil-
ity depletion, thus providing a result biased &vd of
disclosure.

As Figure 11 shows a generallyvdovard trend,
we should either fit a Goel-Okumoto model or an S-
shaped Wibull model (to account for the initial rise in
the number of vulnerabilities disewed.) The G-O
model was fit via least squares estimation and the
Weibull model was fit using maximume-likelihood esti-
mation. Figure 14 shwes the result of fitting these ow
trend lines.

Both trend lines are superimposed on Figure 11.
Figure 15 shows the exponential model parameters and
Figure 16 shows the estimated model parameters for
the Weibull model. Note that although theponential
fit is not perhaps as nice visually as we mighg liwe
were able to validate it by working bacémis to the
implied number of original vulnerabilities and then
using Monte Carlo estimation to simulate the vulnera-
bility finding process. The results arairfy similar to
our measured cuey indicating that the exponential is a
reasonable model. Note that the larger data set here



allows us to agggdte the data into months instead of
quarters, thus the exponential scale constants ae- a f

6.7 Are we depleting the pool of vulnera-
bilities?

tor of three lager than with the cohort regressions of We ae nav in a position to come back to our basic

Figures 9 and 13.

w 9 - —— Exponential
=y ---  Weibull
@
-
o
Nl
[
o)
S
=1 o _|
4 —

T
0 50 100 150

Age of Bug (months)
Figure 14 Fitted overall vulnerability decay curves

A 31.3
6 48.6
N=A6 1521

Figure 15 Exponential fit parameters for vulnerability age at
discovery time

a(shapgl.25
B(scale36.6

Figure 16 Weibull fit parameters for vulnerability age at dis-
covery time

Figure 17 shas the cumulatie dstribution functions
for the probability that a vulnerability will be found by
timet given these fit parameters.

- —— Exponential
---  Weibull

Number of bugs found

00 02 04 06 08 10

T T T T
0 50 100 150

Age of Bug (months)
Figure 17 Probability that a vulnerability will be found

As mentioned abeg, this estimate ofp, is very likely
to be an gerestimate because of sampling bias.

guestion from Section 5: to whattent does vulnera-
bility finding deplete the pool of vulnerabilities. The
data from Sections 6.5 and 6.4 yides only very weak
support for a depletion fefct. Even under conditions of
extreme bias, the highest depletion estimate we can
obtain from Section 6.5.1, is that the half-life for vul-
nerabilities is approximately 2.5 years. idwer, no
depletion whatsogr cannot be ruled out gén this
data. In that case, the probability of redisgy p,
would be vanishingly small.

The conclusion that there is fairly little depletion
accords with anecdotabigence. It5 quite common to
discover vulnerabilities that hae been in programs for
years, despitex¢ensve audits of those programs.oF
instance, OpenSSH has recently had a number of vul-
nerabilities [23] that were in the original SSH source
and surwed audits by the OpenSSH team.

6.8 Sources of Error

In ary analysis of this type there are agarnumber of
potential sources of erroMe dscuss the knen
sources in this section.

6.8.1 Unknown Versions

As indicated in Section 6.2.2, a number of the program
versions were listed as ".", meaning "unknowar-v
sion". In approximately 15% of our data points time of
first introduction was therefore somewhat indetermi-
nate. V& dscarded these data points in our initial anal-
ysis. As a check for bias, we manuallyastigated all

of these vulnerabilities and were able to determare v
sion numbers for approximately 100 (8% of the total
data set). W reran our rgressions with largely similar
results to the original data set. With this change, the
2000 cohort linear regression iswbarely significant

(p =.0446) instead of barely insignificarp & . 0565).

6.8.2 Bad Version Assignment
One problem with the introductioneksion algorithm
described in Section 6.5 is that some programs do not
issue ‘ersion numbers in strict sequence. For instance,
FreeBSD for some time maintained the 3.x and 4.x
branches in parallel. Because we usesion number as
our primary sort, in some unusual cases this caremak
vulnerabilities appear younger than ythia fact are,
thus making disclosure look more attraeti

For instance, a vulnerability which appeared only
in FreeBSD 4.1 and FreeBSD 3.5uwld be recorded as
“introduced” in 3.5, een though 4.1 was released



previously Note, havever, that a bug which also
appeared in 3.4 euld get the correct introduction date

confidence limits. Thus, if anything,\&ee vulnerabili-
ties are depleted more wlly than ordinary vulnerabili-

because 3.4 preceded 4.1. Handling this issue correctlyies.
is difficult because in some sense these code branches

are diferent programs. In practice, there is no signifi-
cant impact on the results because this misassignme
occurs rarelyWe double-checkd our results by com-
paring the oldesknown version to the assignedex
sion and only found this form of misassignment in 10
cases. Rerunning oureall regressions using the ear
liest known introduction dates produced essentially
equialent results. Note that these assignment problem
have ro real impact on the analysis in Section 6.4.

6.8.3 Announcement Lag

From 2001 on, ICA started using the date that entries
were entered in ICR as he "published before" date,
replacing the previous standard of "earliest mention".
This is a potential source of bias, making vulnerabili-
ties appear older upon publication thanythefact are.

S

.8.5 Operating System Effects

ome vulnerabilities in ICR are listed as correspond-
ing to a gven operating system revision but actually
correspond to a piece of software that runs on that v
sion (e.g., Exchange onikidows NT 4.0), but areot
listed under the actual program name as well. This pro-
duces a dlse introduction date corresponding to the
Introduction date of the operating system instead of the
package. Inspection suggests that this is a velati
small fraction of the vulnerabilities and there is no
good reason to belre that this would be a source of
systematic bias rather than random erroweve, we
are currently considering ways of controlling for this
sort of error One approach we are considering is to
manually go through the database and diacdhe
exact status of each vulnerabilitVe have not done

In order to assess the magnitude of this potential biasthis yet, howeer.

we subtracted 2 months (which seems to be the maxi
mum common lag) from each vulnerability age and
repeated thewarall exponential rgression. This pro-
duced a rate constant éf=44. 2, which is approxi-
mately 10% laver than our original estimate of the rate
constant, but still within the confidence boundaries.

A related problem is vulnerabilities which are
listed both under a operating system and non-operating
system packages. In maoases (e.g., OpenSSL), these
programs are bundled with avgn operating system. In
such cases, as long as werdhaelease dates for both
the package and the operating system (which we do for

When we reanalyzed the age cohort data with thismost of the popular packages), then we are generally
lag, year 2000 also becomes significant. The progranable to determine the correct vulnerability introduction

cohorts still shav no dgnificance with this lag. Other
manipulations of the data shialightly differing signif-
icance patterns. B’common to see significance under
somemanipulations of the data and this kind of insta-

date. In some cases, when the package isuratléd,
however, this will yield an incorrect introduction date.
Re-analyzing the data with data points listed under
both an Operating Systems and a non-Operating Sys-

bility to exact data set choice is generally a sign thattem packagen = 225) remwoed yielded essentially the

what is being observed are aatifs of the analysis
rather than real effects. M&theless, in the future we
would like to determine exact publication dates for
each vulnerability in order to confirm our results.

6.8.4 Vulnerability Severity

The seerity of the vulnerabilities in ICA varies dra-
matically Some vulnerabilities are tial and some are
critical. It is possible that serious vulnerabilities are
discovered quickly whereas non-serious ones leak out
slowly. In order to test this hypothesis, we repeated our
regressions using only the vulnerabilities that were
ranked as having "High" serity in ICAT. This pro-
duced a slightly slower depletion rate £ 53. 6) and

the indvidual age and program cohortgressions
shaved little evidence of depletion. With thgoeption

of 1999, the linear trend lines are not significantly non-
zero—and in some cases non-significantly peesitin
addition, the Laplace attors are generally within

same results'

6.8.6 Effort Variability

One possible problem with this analysis is that the
amount of dbrt expended on gngiven program may
vary throughout its lifetime, thus fakcting the rate at
which vulnerabilities are found. Unfortunateflge only
metric we currently hae for the amount of effort being
expended is the number of vulnerabilities found, which
is our measured variable. Thus, we cannot control for
this effect. The werall level of bug finding, havever,
appears to hee been fairly stable (though there is much
inte-month variation) wer the period 1999-2003, as
shown in Figure 5.

4. Thisassignment is a little rough because we were not
able to identify the nature of some rare packages and a
few were clear errors (e.g., "IBM A/UX"). Keever, this
should not significantly change the results.



6.8.7 Different Vulnerability Classes

Another source of error is the possibility thatvneul-
nerability classes are being digemd. Thus, for
instance, it may be that as soon as Foerflwv errors
are discegered, a rash of them are found in IE, but then
all the easy ones are quickly found and no mare F
Overflow errors are found. This euld be an instance
of strong non-randomness in vulnerability digsy
order There doestt’'seem to be enough data to repeat
our analysis stratified by vulnerability cgtey, but the
overall ICAT datistics [24] suggest that the pattern of
vulnerabilities found has been fairly constamerothe
period 2001-2003.

6.8.8 Data Errors
Aside from the other sources of error listed in the pre-

compensating reduction in intrusions from vulnerabili-
ties which would hee been disceered by black hats.

In practice,p, =0 is dearly unrealistic, since vul-
nerabilities are occasionally redisa@red. What is
more likely is that the assumption of Section 5 that vul-
nerabilities are found in random order is not strictly
correct. Rathersome vulnerabilities are didiently
obvious that thg are rediscwered but there is a lge
population of residual vulnerabilities which is not sig-
nificantly depleted. In this case, the assumptipn
would be non-homogenous but small or zero for most
vulnerabilities.

7.1.1 How many additional intrusions are
created b y disclosure?

vious sections, there is the general problem of errors irlf vulnerability disclosure increases the number of

the ICAT database leading to incorrect conclusions. W
have dtempted to identify all the sources of systematic
error and belige that the manual procedure followed in
Section 6.2.2 allows us to rem® the obvious entry
errors. Havever, ICAT is manually maintained and
therefore we shouldxpect that there will be errors that
made their \ay into the analysis. ®/do rot believe
that this ivalidates the basic conclusions. Wever, a
larger data set with more precise data might yieid e
dence of effects which this study did nov@aufficient
power to resolve.

7 Is it worth disc losing vulnerabilities?

Before we address the question of whether vulnerabil-
ity finding is worthwhile, we first address a more lim-
ited question: is disclosureonthwhile, a/en ignoring

the cost of vulnerability finding? The combination of

equation (4) and the analysis of Section 6 can be use(g:
(o)
(

to answer this question. In order to do this, we need t
consider the tw possibilities from Section 6.7:

Vulnerabilities are not being depleted.

Vulnerabilities are being slowly depleted, with a
half-life of about three and half years.

We will examine these te/cases separately.

7.1 No Depletion

If there is no vulnerability depletion, then there are
effectively an infinite number of vulnerabilities ang
approaches zero. If this is correct, then the right half of
equation (4) is alays greater than the left half and dis-
closing vulnerabilities is alays a bad idea, no matter
what the relatie szes ofC;, andC,. Thus, if there

is no depletion, then disclosing vulnerabilities isagls
harmful, since it produces weintrusions (using the
newly disclosed vulnerabilities) and there is no

intrusions, than we would l&kto estimate the size of
the increase. As shown in Figure 3, if we disclose we
expect to incur cosC,,, The expected value for the
cost of intrusions if we doh’ disclose is
Pr(Cpriv + Cpun)- If, @as we hae agued, p, is vanish-
ingly small, then the additional cost of intrusions cre-
ated by disclosure 18 ,,,—the entire cost of intrusions
that resulted from our disclosure.

7.2 Slow Depletion
Consider the possibility that vulnerabilities are being
slowly depleted. If we assume that all vulnerabilities
will eventually be found, themp, =1 and equation (4)
would seem to indicate that disclosurasia good idea.
However, equation (4) ignores the effect of time. In
general, if a vulnerability is not yet beingpdoited,

ost people would prefer that if a vulnerability must be
sclosed it be disclosed in the future rather tham no
see the end of this section for discussion of vulnerabil-
ities that are already being exploited).

In welfare economics and risk analysis, this con-
cept is captured by the discount rdt¢25]. The basic
idea is that a dollar today is only worth-H next year
(to feed your intuition, think of the interest you could
have earned if you had the dollar today). There is a lot
of controsersy about the exact correct discount rate, b
standard values range from 3% to 12% annu@ilyen
an annual discount rai, we @an compute thealue
ary number of months in the future using a simple
exponential function with rate constaldg(1 - d)/12.
Multiplying by Cgp We get equation (10).

log(1-d)t
Cgnpe 12

(10)

In order to ®aluate the effect of disclosure, we
need to compute the expectemlue of the cost, which
is simply the cost of a disclosure at timultiplied by



the probability of a disclosure at timgintegrated oer
all values oft. °

Using an g&ponential model, this gés us Ejuation
(12).

t=00 _log(1-d)t

I CerpPr(t)*e 12
=0

dt (11)

We @an evaluate this by plugging in the fit parameters
from Figure 15. Depending on the choice dif this
gives us walues ranging from 8Cgp (d =3%) to
.66Cghp (d =12%) with our exponential model. In
other words, unless black hat disclosure is 128tses
(1/.89= 1. 12) than white hat disclosure (fat = 3%)
then the societal &fct in terms of intrusions is actually
worse than for white hat disclosurever if we ignore
the cost incurred in finding the vulnerabilities. The situ-
ation is more complicated with the eéflull model
because it is not memoryless and therefore the shape
the p, curve depends on the age of the vulnerahility
Table 18 shows some samplelwes depending on the
age of the vulnerability using the fit parameters from

Figure 16. Thus, for instance, the expected present cos

of future disclosure of a vulnerability found at age 12
months is . 98gp assuming a 3% discount rate.

Discounted Cost as fraction 6kup

Vulnerability Age 3% 12%

(Months)

0
12
24
36
48
60

92
.93
.93
.94
.94
.94

72
.75
77
.78
.79
.79

disclosures are 10%asse than white hat disclosures
(let alone 52% wrse if we assume an exponential dis-
tribution and d =12). Ary significant number of
exploitations should alert administrators to these
tence of the vulnerabilityThis is particularly true in
modern networking environments where et
forensics systems are common. Ma@p wide dis-
semination of a vulnerability in the black hat commu-
nity is likely to result in a leak to the white hat commu-
nity. It has been claimed that theeeage time from dis-
covery to disclosure is about one month [11]. Second,
the process of patch deployment is veryws[@] and
therefore vulnerabilities persist long past disclosure,
increasing the total number of intrusions.

Note that if a wvulnerability is already being
exploited in the black hat communitythen the
cost/benefit analysis is somewhatfeliént, since dis-
closure has an immediate benefit as well as an immedi-
cf)afte cost. Havever, in the case where we are novase
of ary such explanation, as the probability of redisco
ery is law, the a priori probability that the vulnerability
has already been disswed is correspondingly Va
herefore, in the absence of information that the vul-
erability is previously knen, we should beh@ & if
we are the first diseerers.

7.3 The Bottom Line

If the effort we are currently westing in vulnerability
finding is paying off, it should be yielding some mea-
surable results in terms of decreasing defect count. In
order to ensure that we were able to seg arch
effect, we hae made a number of assumptioras/dr-
able to the usefulness of vulnerability finding:

1. All vulnerability redisceery is by black hats (Sec-
tion 4)

2. All vulnerabilities are weentually rediscwered

Figure 18 Expected values for disclosure costs with Weibull model (Section 6.1)

For two reasons, it seems unlikely that black hat

5. Notethat we are assuming here that the real cost of
some future intrusion is the same as that of a current
intrusion, which implicitly assumes that the number of
vulnerable machines is the same as well. This is of course
not true, but then some programs becdess popular
instead of more \@r time, and for the \werall agument

we dont know what kind of program we are dealing
with. In addition, the real cost of patching, whichelik
represents a substantial fraction of the cost of a published
vulnerability and which we are ignoring here, goes up
with the size of the installed bask.would be interesting

to repeat this analyis for somggothetical bug in a num-
ber of real commonly deployed pieces of software for
which we knaev the popularity cure and the patching
cost.

3. We ignore the fact that vulnerabilities in obsolete
versions are often listed only for wer \ersions

(Section 6.5)

We ignore the sampling bias introduced by our
limited study period (Section 6.5.1)

Despite this built-in bias, we find littlevielence that
vulnerability disclosure is worthwhileyen if the cost

of the vulnerability finding process itself is ignored.
The "best case" scenario supported by our data and
assumptions is that the process of vulnerability finding
slightly increases reliabilityfHoweve, even if there is
such a increase, when wacfor in discounting our
model suggests that there is no net benefit in disclosing
vulnerabilities. The bottom line, then, is that based on
the evidence we cannot conclude that vulnerability

4.



finding and disclosure pvades an increase in sofane amount of damage. Accordinglgny measures which
security sufficient to offset the effort being«iﬂted.6 improve te rate of patching and nmakast deelop-
ment of malvare more difficult are likely to pay off.

8 Policy Implications o _ .
Given that the data does not support the usefulness of-4  Limitations of This Analysis

vulnerability finding and disclosure, Woshould we  Our analysis here has focused on vulnerability finding
allocate our resources? as a method of reducing the number of intrusions.

However, it should be noted that it may be valuable in

other contexts. In particularesearch into ne classes

of vulnerability as well as automatic dissery of vul-

say that vulnerability finding is not a good ideaw+o nerabilities f”md defenses against _attac_:k may very well
be worthwhile. Our glument here is primarily limited

eve, given the amount of effort beingwested in it, not o th i blicati fyul bilities that
being able to find a significant effect is troublesome. At 1o the routine publication of vuinerabiities that are/ne

this point, it might pay to somewhat deemphasize thelnstalmcedsdif known .cflasTes OL}ll.l:mg.rab”'ty' ddi
process of finding vulnerabilities andveit that efort n addition, &en It vuinerabiity discoery and dis-

into recavering from the vulnerabilities that are found, ;llcr;?:sr? CSEZiSnInOa: d\l/r;%rs:sse}[/rle;ailLtZ?:;i X)\;eclzf:rr;inltcon
through user education and imped technology for y

stituencies. In particuladiscoverers of ngv vulnerabil-
response. o ; . i .
ities may be able to profit from them, either via public-
82 | D Collecti ity or by sale of associated services such as vulnerabil-
: mprove "?‘t‘? 0 ect!on . ity information. Havever, we need to consider the pos-
We @n only hae limited confidence in these results gjhjjity that the interests of these constituencies are in

because the data set we are working from is in quiteynngsition to those of society as a whole, making this a
bad shape. d a geat atent this is the result of the jagsic ngaive exernality situation.

somavhat informal nature of vulnerability reporting
and database maintenance. If we are t@ laagkfinitive 9 Conclusions and Future Work

answer to the guestion of whether vulnerability findi_ng If finding security defects is a useful security witfj
is useful we will need better data. If .vve.start recording then it should hee ssme measurable fekt on the soft-
data more car_efully and formally WQ',” five years or . ware security defect rate. In this papee havelooked
so we will bg in a much better position to answer this for such an effect and only foungry weak eidence
kind of question. of it. In the best case scenario we are able to make, the
total defect count has a half life of approximately 2.5
8.3 Improve Patching years. Havever, our data is also consistent with there
A major reason wi vulnerabilities are so dangerous Peing no such effect at all. In either case, Widence
even dter patches arevailable is that the rate of patch- that the brt being spent on vulnerability finding is
ing is so slev [9]. If automatic patching were more Well spentis Weak._
widely used, then th€,,, would decrease and disclo-  We e seeral likely avenues for future research.
sure would look more attracte. Corversely, cracker's  First, it would be good to attempt to obtain more pre-
ability to quickly derelop and deplp malware based on _cise measureme_nts for adar group of vulnerabilities
disclosures or patches increagkg, and maks disclo- I order to confirm our rate measurements. duld _
sure look less attravé. Even with automatic patching, @lso be valuable to cross-check our results using
a fast worm, such as Staniford et’slWarhol Worm another database of vulnerabilities, perhaps with better
[26]’ released Short'y after disclosure would do gdar data on the date of publication. If better data were
awailable, it would allev us to dscriminate more finely
between alternate reliability models. In particularit
would be interesting to fit to a BAB model [7]. Second,

8.1 Deemphasize Vulnerability Finding
Clearly, we do ot have enough @idence to definitiely

6. Notethat if vulnerabilities can be fixed without dis-
closing them, then the cost/benefit equation changes and
it's possible, though not certain, that vulnerability finding

and fixing pays df This kind of priate fixing is gener it Woulq be useful to quantify the total decrease in wel-
ally impossible with Open Source systems but may be fare with better measurements of the number of and
possible with Closed Source, for instance by releasing cost of intrusions which are due to undisclosed vulner
regular service releases with patches in them. It is unclear abilities. FinaIIy it would be useful to start with a

whether one could maksich releases hard enough to

reverse engineer that thelid not leak information about known groqp of security vulnerabilities all present at
the vulnerabilities the fixed. Rumors persistently circu- the same time and measure the rate at which atee
late in the security community that black hats indeed do independently rediseered, thus aoiding the left-cen-
reverse engineer binary patches in order to discthe soring problems inherent in this work.

vulnerabilities thg fix.



Ackno wledgements [9] Rescorla, E., “Security Holes... Who cargésMo-

The author would lik to hank Phil Beinek, Christo- ~ c€edings of the 13th USENIX Security Symposium
pher Cramer Theo de Raadt, éin Dick, Lisa  (August2003).

Dusseault, Ed Felten, Eu-Jin Goh, Pete Lindstrom,[10] Moore, D., Shannon, C.,, and GlafK., “Code-
Nagendra Modadugu, Vern Paxson, Stefarvaga Red: a case study on the spread and victims of an Inter
Kurt Seifried, Hwav Shacham, Scott Shesik Adam net worm,”Internet Measurement Worksh(1002).
Shostack, Dan Simon.efence Spies, the members of [11] Zalewski, M., “[Full-Disclosure] Re: OpenSSH -

the Bugtraq mailing list, and the aryonous reiewers i x.porce really behind this?Posting to Full-disclo-
at the Workshop for Economics and Information Secu- ;e mailing list (September 22, 2003).

rity for their advice and comments on thisork. https://wwdl.ietf.org/ mail -
Thanks to Dirk Eddellrettel and Spencer Gaes for

help with fitting the Weibull distribution using R.
Thanks to Stee Rurpura for information about IE

man/ opt i ons/ saad/ ekr %40rtf m com

[12] Jefrey, R.C., The Logic of DecisiorJniversity of
Chicago Press, Chicago (1965).

releases.
[13] Luce, R.D., and Rd#, H., “Utility Theory” in
Games and Decisionqp. 12-38, Dwer, New York
(1989).
References [14] Goel, A.L., and Okumoto, K., ffe-Dependent
[1] Full Disclosue Mailing List. Error-Detection Rate Model for Software and Other
http://lists.netsys.con mail - Performance MeasurédEEE Transactions on Relia-
man/listinfo/full-disclosure bility, R-28, 3, pp. 206-211 (August 1979).
[2] ICAT Metabase. [15] Lyu, M.R. (ed.) Handbook of SoftwarReliability,
http://icat.nist.gov/ McGraw Hill (1996).

[3] Browne, H. K., Arbaugh, WA., McHugh, J., and [16] Yamada, S., Ohba, M., and Osaki, S., “S-Shaped
Fithen, W L., “A Trend Analysis of Exploitatiors, Reliability Gronth Modeling for Software Error Detec-

University of Maryland and CMU é&thnical Reports  tion,” IEEE Transactions on ReliabilityR-32, 5, pp.
(2000). 475-478 (December 1983).

[4] Chou, A., Yang, J., Chelf, B., Hallem, S., and [17] Gokhale, S., andrivedi, K.S., A Time/Structure
Englet D., “An Empirical Study of Operating Systems Based Softwar Reliability Model, 8, pp. 85-121
Errors,” Symposium on Operating Systems Principles(1999).

(2001). [18] Ihaka, R., and Gentleman, R., “R: A Language for
[5] Anderson, R.J., “Win Information Security is Hard Data Analysis and Graphits,Journal of Computa-
— an Economic Perspesti,” Proceedings of the 8e  tional and Graphical Statistics.

enteenth Computer Security Applications Confernece [19] CVE-2001-0235.

pp. 358-365, IEEE Computer Security Press (2001).  nttp://cve. mitre. org/ cgi - bi n/ cve-

[6] Anderson, R.JSecurity in Open versus Closed Sys- nane. cgi ?name=CVE- 2001- 0235

tems — The Dance of Boltzmann, Coase and &loor [20] CVE-1999-1048.

http://wwv. ftp.cl.camac. uk/ftp/users/rjald http://cve.nitre.org/ cgi-bin/cve-
/toul ouse. pdf name. cgi ?name=CVE- 1999- 1048

[7] Brady, RM., Anderson, R.J., and Ball, R.®4ur-  [21] Cox, D.R., and Lwis, PA.W.L., The Statistical

phy’s law; the fitness of evolving species, and the limits Analysis of a Series of EventShapman and Hall
of softwae reliability. (1966).

gt_t _FI)_R/ /Af\;miw glf - cam ac. uk/ TechReport s/ UCAM [22] Benham, M., “IE SSL WMnerability” Bugtraq
P posting (August 5, 2002).

[8] Schneier B., “Full disclosure and the winudo of . . ]
vulnerability” Crypto-Gram(September 15, 2000). gg]og))penSSHOpenSSH Security Advisoryufter.adv

http: / /www. count er pane. cont crypt o- http://ww. openssh. com t xt/buffer.adv

gram 0009. ht m #1
[24] ICAT Bug statistics.
http://icat.nist.gov/icat.cfnPfunc-
tion=statistics



[25] Kammen, D.M., and Hassenzahl, D.8hould \&
Risk It?, Princeton Uniersity Press, Princeton, NJ
(1999).

[26] Staniford, S., Paxson, V., ance@/er, N., “How to
Own the Internet in dur Spare ime,” Proceedings of
the 12th USENIX Security Symposi(fagust 2002).



