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Abstract
A large amount of effort is expended every year on find-
ing and patching security holes. The underlying ratio-
nale for this activity is that it increases welfare by
decreasing the number of vulnerabilities available for
discovery and exploitation by bad guys, thus reducing
the total cost of intrusions. Given the amount of effort
expended, we would expect to see noticeable results in
terms of improved software quality. However, our
investigation does not support a substantial quality
improvement—the data does not allow us to exclude the
possibility that the rate of vulnerability finding in any
given piece of software is constant over long periods of
time. If there is little or no quality improvement, then
we have no reason to believe that that the disclosure of
vulnerabilities reduces the overall cost of intrusions.

1 Introduction
An enormous amount of effort is expended every year
on finding, publishing, and fixing security vulnerabili-
ties in software products.

• The Full Disclosure [1] mailing list, dedicated to
the discussion of security holes, had over 1600
postings during the month of September alone.

• The ICAT [2] vulnerability metabase added 1307
vulnerabilities in 2002.

• Microsoft Internet Explorer 5.5 alone had 39 pub-
lished vulnerabilities in 2002.

Clearly, many talented security professionals are
expending large amounts of time on the project of find-
ing and fixing vulnerabilities. This effort is not free. It
comes at a cost to the companies funding the effort as
well as a significant opportunity cost since these
researchers could be doing other security work instead
of finding vulnerabilities. Given all of this effort, we
should expect to see some clearly useful and measur-
able result. The purpose of this paper is to measure that
result.

The basic value proposition of vulnerability find-
ing is simple: It is better for vulnerabilities to be
found and fixed by good guys than for them to be
found and exploited by bad guys.If a vulnerability is
found by good guys and a fix is made available, then

the number of intrusions—and hence the cost of intru-
sions—resulting from that vulnerability is less than if it
were discovered by bad guys. Moreover, there will be
fewer vulnerabilities available for bad guys to find.
Thus, the project is to find the vulnerabilities before the
bad guys do.1

In this paper we attempt to determine whether vul-
nerability finding is having a measurable effect. The
value proposition just stated consists of two assertions:

1. It is better for vulnerabilities to be found by good
guys than bad guys.

2. Vulnerability finding increases total software qual-
ity.

In Sections 3 and 4, we consider the first assertion. In
Sections 5 and 6 we consider the second assertion. In
Section 7 we use the results of the previous sections to
address the question of whether vulnerability finding is
doing any measurable good.

Any attempt to measure this kind of effect is inher-
ently rough, depending as it does on imperfect data and
a number of simplifying assumptions. Since we are
looking for evidence of usefulness, where possible we
bias such assumptions in favor of a positive result—and
explicitly call out assumptions that bias in the opposite
direction. Thus, the analysis in this paper represents the
best case scenario that we were able to make for the
usefulness of vulnerability finding that is consistent
with the data and our ability to analyze it.

2 Previous Work
The impact of vulnerability finding has been the topic
of endless discussion on mailing lists, newsgroups, and
at security conferences. In general, actual data on
exploitations as a result of disclosure has been rare.
The major exception is Browne et al.’s [3] work on the
rate of exploitation. Browne et al. found that the total
number of exploits increases roughly as the square root
of time since disclosure.

There is an extensive literature on software relia-
bility but it is primarily targeted towards large scale

1. Anotherrationale typically cited for vulnerability dis-
closure is that embarrassment pressures software vendors
into producing more secure software. Thereis no good
empirical data for such an effect and some anecdotal data
that vendors are unresponsive to such embarrassment.In
this paper we focus only on the immediate costs and ben-
efits of vulnerability discovery and disclosure.



industrial software. The literature on software reliabil-
ity mostly focuses on large fault-tolerant systems, not
on personal computer systems. Moreover, such studies
typically focus on all faults, not on security vulnerabili-
ties.

Chou et al. [4] measured the rate of bug finding
and fixing in the Linux and BSD kernels but did not
distinguish between vulnerabilities and other bugs.
They did not attempt to fit a parametric model, but
instead used Kaplan-Meier estimation and did not
attempt to compute rediscovery probabilities. Their
estimate of bug lifetime (mean=1.8 years) is somewhat
shorter than ours, but they see a generally similar
curve. Unfortunately, it is not possible to directly com-
pare Chou et al.’s results with ours because we have
extensive and unmeasurable censoring (i.e., if there are
vulnerabilities that persist past the study period, our
technique does not know about them at all). However,
for the two programs for which we have long time
baselines, thus partially ameliorating the censoring (NT
4.0 and Solaris 2.5.1), we find a much slower decay
curve than found by Chou et al.

The theoretical work on bug finding is also sparse.
In [5] and [6] Anderson presents a theoretical argu-
ment using reliability modeling that suggests that a
large number of low probability vulnerabilities favors
the attacker rather than the defender because it is easier
to find a single bug than to find all of them. Thus, the
defender needs to work much harder than a dedicated
attacker in order to prevent a single penetration. In a
related paper, Brady et al. [7] argue that reducing bugs
through testing quickly runs into diminishing returns in
large systems once the most obvious bugs (and hence
vulnerabilities) are removed.

Anderson et al. do not, however, address the ques-
tion of disclosure or whether attempting to find vulner-
abilities is worthwhile. Answering these questions
requires addressing empirical data as we do in this
paper. As far as we know, we are the first to do so.

3 The lif e cycle of a vulnerability
In order to assess the value of vulnerability finding, we
must examine the events surrounding discovery and
disclosure. Several authors, including Browne et al. [3],
and Schneier [8] have considered the life cycle of a
vulnerability. In this paper, we use the following
model, which is rather similar to that described by
Browne.

• Introduction—the vulnerability is first released as
part of the software.

• Discovery—the vulnerability is found.

• Private Exploitation—the vulnerability is exploited
by the discoverer or a small group known to him.

• Disclosure—a description of the vulnerability is
published.

• Public Exploitation—the vulnerability is exploited
by the general community of black hats.

• Fix Release—a patch or upgrade is released that
closes the vulnerability.

These events do not necessarily occur strictly in this
order. In particular, Disclosure and Fix Release often
occur together, especially when a manufacturer discov-
ers a vulnerability and releases the announcement
along with a patch. We are most interested in two
potential scenarios, which we termWhite Hat Discov-
ery (WHD) andBlack Hat Discovery(BHD).

3.1 White Hat Disco ver y
In the White Hat Discovery scenario, the vulnerability
is discovered by a researcher with no interest in
exploiting it. The researcher then notifies the vendor—
often he is an employee of the vendor—and the vendor
releases an advisory along with some sort of fix. Note
that it is of course possible for an advisory to be
released prior to a fix but this is no longer common
practice. During the rest of this paper, we will assume
that fixes and public disclosures occur at the same time.
In this scenario, Disclosure and Fix Release happen
simultaneously, as the entire world (with the exception
of the discoverer and vendor) finds out about the vul-
nerability at the same time. There is no Private
Exploitation phase. Public Exploitation begins at the
time of Disclosure.
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Figure 1 White Hat Discovery process when disclosure and
fix release occur together

Figure 1 shows the sort of process we expect to see.
The bottom curve shows the number of intrusions as a
function of time. As the vulnerability is not known to
attackers prior to Disclosure, there are no intrusions up
to this time. At Disclosure time the Public Exploitation
phase begins and we start to see intrusions. The rate of



intrusions increases as the knowledge of how to exploit
the vulnerability spreads. Eventually, people fix their
machines and/or attackers lose interest in the vulnera-
bility—perhaps due to decreasing numbers of vulnera-
ble machines—and the number of intrusions goes
down.

The top line shows the fraction of potentially vul-
nerable machines. We can model this as roughly con-
stant up until the time of Disclosure. We are assuming
that a fix is released at Disclosure time and therefore
the number of vulnerable systems starts to decline at
this point. In most situations, the time scale of this
decline is very long, with substantial numbers of
machines still vulnerable months after the disclosure of
the vulnerability [9]. In environments where a vulnera-
bility is very actively exploited (the Code Red worm,
for instance), there is more selective pressure and fixing
occurs more rapidly [10].

The rate of intrusion is the result of the interaction
of two processes: the level of interest in exploiting the
vulnerability and the number of vulnerable machines.
The level of interest in exploiting the vulnerability is at
least partially determined by the tools available.
Browne et al. [3] report that when only the description
of the vulnerability is available the rate of intrusion is
relatively low but that it increases dramatically with the
availability of tools to exploit the vulnerability.
Whether the eventual decline in intrusions is a result of
a decreasing number of vulnerable systems or of
attackers simply moving on to newer and more exciting
vulnerabilities is unknown. It seems likely that both
effects play a part.

3.2 Blac k Hat Disco ver y
In the Black Hat Discovery scenario, the vulnerability
is first discovered by someone with an interest in
exploiting it. Instead of notifying the vendor, he
exploits the vulnerability himself and potentially tells
some of his associates, who also exploit the vulnerabil-
ity. The information about the vulnerability circulates
in the Black Hat community. Thus, during this period
of Private Disclosure, some limited pool of in-the-know
attackers can exploit the vulnerability but the popula-
tion at large cannot and the vendor and users are
unaware of it.

At some time after the initial Discovery, someone
in the public community will discover the vulnerability.
This might happen independently but seems more
likely to happen when an attacker uses the vulnerability
to exploit some system owned by an aware operator. At
this point, the finder notifies the vendor and the process
described in the previous section begins (assuming that
the announcement of the vulnerability and the release
of the fix happen at more or less the same time.)

Figure 2 shows what we expect to see. The pri-
mary difference from Figure 1 is that there is a nonzero
rate of exploitation in the period between Discovery
and Disclosure. It is an open question just how large
that rate is. It is almost certainly less than the peak rate
after disclosure since the Private Exploitation commu-
nity is a subset of the total number of attackers. In Fig-
ure 2 we have shown it as quite a bit smaller. This
seems likely to be the case, as many White Hat security
researchers are connected to the Black Hat community
and so large scale exploitation would likely be discov-
ered quickly. There is no good data on this topic, but
some observers have estimated that the average time
from discovery to leak/disclosure is on the order of a
month [11].
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Figure 2Black Hat Discovery Process

3.3 The cost of a vulnerability
The Discovery of a vulnerability imposes two primary
types of costs on users and administrators: fixing and
intrusions. If an administrator opts to apply whatever
fix is available, this imposes costs both in terms of
administrator personnel time and potential system
downtime. If an administrator opts not to apply a fix
then there is some risk that their systems will suffer an
intrusion, which entails emergency response, cleanup,
system downtime, and potential destruction, corruption
or theft of data.

In Figures 1 and 2, the cost of fixing is represented
by the difference between the starting and ending val-
ues of the number of vulnerable machines—in other
words the number of fixes that are applied, since the
cost of fixing is very roughly proportional to the num-
ber of machines that must be fixed. For the purposes of
this paper, we are principally concerned here with the
cost of intrusion. If we assume that fixing rate is
roughly the same in both scenarios, then the cost due to
fixing will also be similar. The cost of intrusion is
related to, but not totally controlled by the area under



the under the intrusion rate curve. Clearly, some
machines are more valuable than others and therefore
their compromise will have a greater cost. We expect
that Black Hats will preferentially attack high value tar-
gets and that those high value targets will be fixed rela-
tively quickly. Therefore, we might expect that the
machines compromised during the private exploitation
period will be more valuable in general than those
compromised during the public exploitation period.
Overall, this is probably true, however, even high value
targets often take days or weeks to fix and therefore
there will be substantial exposure right after Disclo-
sure. Because most of the Black Hat community likely
does not know about a given vulnerability, the period
just after disclosure (when the rest of the Black Hats
find out as well) will have plenty of new opportunities
for attacks on high value targets. In addition, when a
worm is available it will generally not discriminate
between high and low value targets.

3.4 WHD vs. BHD
It seems intuitively obvious that if one has to choose
between the BHD and WHD scenarios, one should pre-
fer WHD, as WHD eliminates the period of Private
Exploitation. As a first approximation, we assume that
except for this difference the WHD and BHD scenarios
are identical. Thus, the cost advantage of WHD over
BHD is the cost incurred during the Private Exploita-
tion phase. If we denote the cost of Private Exploitation
as Cpriv and the cost of Public Exploitation asCpub,
then the cost of intrusions in the WHD scenario is
given by:

CWHD = Cpub (1)

and the cost of intrusions in the BHD scenario is:

CBHD = Cpriv + Cpub (2)

The advantage of WHD is

CBHD − CWHD = Cpriv (3)

Obviously, this approximation is imperfect and proba-
bly overestimates the cost difference. First, administra-
tors are likely to be more diligent about patching if they
know that a vulnerability is being actively exploited.
Thus, the total number of vulnerable systems will
decline more quickly in the BHD scenario and the peak
rate of disclosure will be correspondingly lower. Simi-
larly, some of the "early exploiters" immediately after
Disclosure are likely part of the Private Exploitation
community and therefore Disclosure will likely not
produce as large a rise in initial exploitation in the
BHD case as in the WHD. However, the simple and
conservative approach is to ignore these effects.

4 Cost-Benefit Analysis of Disclosure
Imagine that you are a researcher who is the first per-
son anywhere to discover a vulnerability in a widely
used piece of software. You have the option of keeping
quiet or disclosing the vulnerability to the vendor. If
you notify the vendor the WHD scenario of Section 3.1
will follo w. If you do not notify the vendor, a Black
Hat may independently discover the vulnerability, thus
initiating the BHD scenario. However, there is also
some chance that the vulnerability will never be redis-
covered at all or that it will be rediscovered by another
White Hat. In the first case, the cost of disclosure will
never be incurred. In the second, it will be incurred
later. Either outcome is superior to immediate disclo-
sure.

Consequently, in order to assess whether disclo-
sure is a good thing or not we need to estimate the
probability of the following three outcomes:

1. The vulnerability is never rediscovered (pnull)

2. The vulnerability is rediscovered by a White Hat
(pwhd)

3. The vulnerability is rediscovered by a Black Hat
(pbhd)

We consider a "worst-case" model: assume that all
potential rediscovery is by Black Hats and denote the
probability of rediscovery as pr . Consistent with our
practice, this simplifying assumption introduces a bias
in favor of disclosure. The only way in which failure to
disclose does harm is if the vulnerability is rediscov-
ered by a Black Hat. Thus, assuming that vulnerabili-
ties are always rediscovered by Black Hats overesti-
mates the damage done by rediscovery and therefore
the advantage of disclosure. Using standard decision
theory (see, for instance [12, 13]) we get the choice
matrix of Figure 3.

Not Rediscov-
ered (pnull)

Rediscovered
(pr )

Disclose Cpub Cpub

Not Disclose 0 Cpub + Cpriv

Figure 3Disclose/not disclose decision matrix

Working through the math, we find that the choice to
disclose only reduces the expected cost of intrusions if:

pr (Cpriv + Cpub) > Cpub (4)

In order to justify disclosing, then, the expected cost of
excess intrusions in the case of BHD has to be large
enough to outweigh the known cost of intrusions
incurred by disclosing in the first place. The rest of this
paper is concerned with this question.



5 From finding rate to pr

In order to attack this problem, we make one further
simplifying assumption: that vulnerability discovery is
a stochastic process. If there are a reasonable number
of vulnerabilities in a piece of software, we don’t
expect them to be discovered in any particular order,
but rather that any giv en extant vulnerability is equally
likely to be discovered next. Note that this assumption
is not favorable to the hypothesis that vulnerability
finding is useful. If, for instance, vulnerabilities were
always found in a given order, then we would expect
that a vulnerability which is not immediately disclosed
will shortly be found by another researcher. Howev er,
this simplification is probably approximately correct—
since different researchers will probe different sections
of any giv en program, the vulnerabilities they find
should be mostly independent—and is necessary for
our analysis. Using this assumption, we can use the
overall rate of vulnerability discovery to estimatepr .

Consider a piece of softwareS containingVall vul-
nerabilities. Over the lifespan of the software, some
subset of themV found will be discovered. Thus, the
likelihood that any giv en vulnerability will be discov-
ered during the life of the software is given by:

pdiscovery=
V found

Vall
(5)

Similarly, if we pick a vulnerability that has just been
discovered, the chance of rediscovery has as its upper
bound the chance of discovery:

pr ≤ pdiscovery=
V found

Vall
(6)

Accordingly, if we know the number of total vulnera-
bilities in the software and the rate at which they are
found, we can estimate the probability that a vulnera-
bility will be rediscovered over any giv en time period.
The problem therefore becomes to determine these two
parameters.

6 The Rate of Vulnerability Disco ver y
We can measure the rate of vulnerability discovery
directly from the empirical data. Using that data and
standard software reliability techniques we can also
derive an estimate for the number of vulnerabilities.
The procedure is to fit a reliability model to the empiri-
cal data on vulnerability discovery rate, thus deriving
the total number of vulnerabilities. The model also
gives us the projected vulnerability finding rate over
time and therefore the probability of vulnerability dis-
covery at any giv en time.

For our purposes, it’s important to be specific
about what we mean by a "piece of software". Real
software undergoes multiple releases in which

vulnerabilities are fixed and other vulnerabilities are
introduced. What we wish to consider here is rather
individual releases of software. For instance, when
FreeBSD 4.7 was shipped, it had a certain fixed num-
ber of vulnerabilities. During the life of the software,
some of those vulnerabilities were discovered and
patches were provided. If we assume that those patches
never introduce new vulnerabilities—which, again,
favors the argument for disclosure—then the overall
quality of the software gradually increases. We are
interested in the rate of that process.

6.1 Modeling Vulnerability Disco ver y
The literature on modeling software reliability is
extremely extensive and a large number of models
exist. No model has yet been found suitable for all pur-
poses, but the dominant models for software reliability
are stochastic models such as the Homogenous Poisson
Process (HPP) models and Non-Homogenous Poisson
Process models such as Goel-Okumoto (G-O) [14],
Generalized Goel-Okumoto (GGO) [15], and S-shaped
model [16].

In this context, reliability is defined as the number
of failures (vulnerabilities) observed during a given
time period. Thus, if a system is getting more reliable,
that means that fewer failures are being observed. For
simplicity, these models assume that all failures are
equally serious. Roughly speaking, there are three
classes of models depending on the overall trend of
failures:

Trend Models

Reliability growth G-Oand Generalized G-O

Reliability decay followed by growth Log-logistic/S-shaped

Stable reliability Homogenous Poisson Process

Figure 4Trend and corresponding models
(after Gokhale and Trivedi[17])

We are primarily interested in models where reliability
is increasing, since only those models predict a finite
number of vulnerabilities. If reliability does not
increase, then the projected number of vulnerabilities is
effectively infinite and the probability of rediscovery in
any giv en time period must be very low. The simplest
such model is the Goel-Okumoto Non-Homogenous
Poisson Process model, which we describe here.

In the G-O model, the number of vulnerabilities
discovered in a single product per unit timeM(t) is
assumed to follow a Poisson process. The expected
value of the Poisson process is proportional to the num-
ber of undiscovered vulnerabilities att. The result is
that the expected value curve follows an exponential
decay curve of the formrate = Nbe−bt, whereN is the
total number of vulnerabilities in the product andb is a



rate constant. As more vulnerabilities are found the
product gets progressively more reliable and the rate of
discovery slows down.

Chou et al.’s results [4] provide general confirma-
tion that this is the right sort of model. Their studies of
bugs in the Linux kernel found a slow decay curve with
a mean bug lifetime of 1.8 years. It is widely believed
that security vulnerabilities are more difficult to find
than ordinary bugs because ordinary bugs often cause
obvious failures in normal operation, whereas vulnera-
bilities are often difficult to exercise unintentionally
and therefore must be found by auditing or other forms
of direct inspection. Thus, while we cannot use their
results directly, this correspondence provides an indica-
tion that this sort of model is correct.

Given the G-O model, the probability that a vul-
nerability will be discovered in a given time period is
thus equal to the fraction of the area under thepr (t)
curve during that time period. We can estimatepr (t) by
the following procedure: First, we fit an exponential of
the form Ae−t/θ to the curve of vulnerability discovery.
We can then easily find the total number of vulnerabili-
ties by integrating:

N =
∞

t=0
∫ A

N
e−t/θ dt = Aθ (7)

In order to compute the probability that a vulnerability
will be found over any giv en time period (t, t + ∆t), we
first normalize by dividing outN. This gives us:

pr (t0,∆t) =
t0+∆t

t=t0

∫ 1

θ
e−t/θ dt = e−t/θ − e−(t+∆T)/θ (8)

We are particularly interested in the probability at time
t that a vulnerability will be found in the next time
period ∆t. Since an exponential is memoryless, this
probability is the same no matter what the age of the
vulnerability and is given by equation (9).

pr (∆t) = 1 − e−∆T/θ (9)

Note that this assumes that all vulnerabilities will even-
tually be found. Again, this assumption is favorable to
the argument for disclosure. If there are vulnerabilities
in program X which remain unfound because interest
in program X wanes, then this model will over-predict
pr and therefore overestimate the left half of equation
(4), making disclosure seem more desirable.

6.2 Measured Vulnerability Disco ver y
Rates

In order to measure the actual rate of discovery of vul-
nerabilities, we used the ICAT vulnerability metabase

[2]. ICAT is run by NIST, which describes it as fol-
lows:

The ICAT Metabase is a searchable index of com-
puter vulnerabilities. ICAT links users into a vari-
ety of publicly available vulnerability databases
and patch sites, thus enabling one to find and fix
the vulnerabilities existing on their systems. ICAT
is not itself a vulnerability database, but is instead
a searchable index leading one to vulnerability
resources and patch information. ICAT allows one
to search at a fine granularity, a feature unavailable
with most vulnerability databases, by characteriz-
ing each vulnerability by over 40 attributes
(including software name and version number).
ICAT indexes the information available in CERT
advisories, ISS X-Force, Security Focus, NT Bug-
traq, Bugtraq, and a variety of vendor security and
patch bulletins. ICAT does not compete with pub-
licly available vulnerability databases but instead
is a search engine that drives traffic to them. ICAT
is maintained by the National Institute of Stan-
dards and Technology. ICAT is uses and is com-
pletely based on the CVE vulnerability naming
standard (http://cve.mitre.org).

ICAT makes the entire database available for public
download and analysis, which made it ideal for our
purposes. Our analysis is based on the May 19, 2003
edition of ICAT. We downloaded the database and then
processed it with a variety of Perl scripts. All statistical
analysis was done with R [18].2

6.2.1 Vulnerability Disco ver y Rate by Cal-
endar Time

The simplest piece of information to extract is the rate
of vulnerability disclosure over time. ICAT lists a "pub-
lished before" date for each vulnerability, which repre-
sents an upper bound on publication. For vulnerabilities
prior to 2001, the "published before" date is the earliest
date that the ICAT maintainers could find. For vulnera-
bilities after 2001, the date is when the vulnerability
was added to ICAT. The maintainers attempt to add
vulnerabilities within a week of CVE or CAN ID
assignment (candidate (CAN) assignment is generally
fairly fast but vulnerability (CVE) assignment is often
quite slow). In general, "the published before" date
appears to be within a month or two of first publication.
This introduces a modest amount amount of random
noise to our data but otherwise does not substantially
impact our analysis (see Section 6.8.2 for sensitivity
analysis). Figure 5 shows the rate of vulnerability dis-
covery by month.

2. Researchersinterested in obtaining a copy of the raw
or processed data should contact the author.
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Figure 5The rate of vulnerability discovery

As is apparent from Figure 5, there is substantial varia-
tion in the rate of disclosure. Part of the variation
appears to be due to the fact that batches of vulnerabili-
ties are often found together. For instance, in month
211, a batch of 9 vulnerabilities (out of 51 that month)
were found in Bugzilla. The peak at month 179 is less
clear, but a large number of vulnerabilities in that
month were inserted at 12/31/1999, so most likely this
is an artifact of end-of-year cleanup. Cursory analysis
yields no other obvious patterns in the variation.

Unfortunately, for our purposes, this representation
of the data isn’t that useful. Since each program was
released on a separate date, the discovery rate by calen-
dar time is a superposition of the discovery curves for a
large number of programs. Each program has its own
discovery curve with the clock starting at the time of
release. To do better we need to take into account the
time of introduction of the vulnerability into the code
base.

6.2.2 Finding Affected Programs
The ICAT database does not list the time when a vul-
nerability was introduced into the code. However, it
does provide the programs and version numbers which
are affected by the vulnerability. We can use this as a
proxy for the time when the vulnerability was intro-
duced by using the release date of the earliest affected
version.

The large number of programs in the ICAT
database made finding release dates for all of them pro-
hibitive. Instead, we selected the programs with the
largest number of vulnerabilities. Somewhat arbitrarily,
we chose 20 vulnerabilities as the cutoff point. This
gave us the list of programs in Figure 6.3 Note that the
vulnerability counts here are purely informational
because they are aggregated by program, regardless of
version. Throughout the analysis we will be handling
each version as separate. We were able to find release

3. Note,this table was generated before any data cleans-
ing was done, so there may be small misalignments with
the later analysis

information for all of the listed programs except AIX,
Oracle, Imail, Unixware, Firewall-1, and IOS. These
programs were omitted from study.

Vendor Program Vulnerability Count

* Oracle Oracle9iApplication Server 20

* Conectiva Linux 20

Microsoft Windows ME 20

* I pswitch Imail 20

Microsoft Outlook 21

Microsoft OutlookExpress 22

Apple MacOSX 22

* Oracle Oracle9i 23

ISC BIND 25

MIT Kerberos 5 25

* SCO Unixware 26

Slackware Linux 27

KDE KDE 27

Netscape Communicator 27

* Check Point Software Firewall-1 29

Mozilla Bugzilla 29

* Oracle Oracle8i 29

Apache Group Apache 32

Caldera OpenLinux 35

Microsoft Windows XP 36

BSDI BSD/OS 37

* Cisco IOS 38

Microsoft SQLServer 42

Microsoft Windows 95 42

SCO OpenServer 46

Microsoft Windows 98 47

MandrakeSoft Linux 51

Linux Linux kernel 54

S.u.S.E. Linux 65

OpenBSD OpenBSD 68

Sun SunOS 68

NetBSD NetBSD 70

Debian Linux 88

Microsoft IIS 100

* I BM AIX 122

SGI IRIX 133

Microsoft Windows 2000 134

Microsoft InternetExplorer 140

HP HP-UX 142

FreeBSD FreeBSD 152

Microsoft Windows NT 171

RedHat Linux 183

Sun Solaris 192

* i ndicates release data not available.

Figure 6Programs under study

Data Cleansing

Once we had identified the programs we wished to
study, we eliminated all vulnerabilities which did not



affect one of these programs. This left us with a total of
1678 vulnerabilities. We manually went over each vul-
nerability in order to detect obvious errors in the ICAT
database. We identified three types of error:

1. Obvious recording errors where the description of
the vulnerability did not match the recorded ver-
sion number or there was some obvious typograph-
ical mistake such as a nonexistent version number
(n=16). We corrected these before further process-
ing.

2. Vulnerabilities where the textual description read
"version Xand earlier" but the list of affected ver-
sions was incomplete (n=96). We tagged these vul-
nerabilities for future analysis but did not correct
them. Note that this source of error makes vulnera-
bilities appear younger than they are. This creates
a false appearance that vulnerability discovery
rates decrease more over the age of the vulnerabil-
ity thus overestimating the value of disclosure.

3. Vulnerabilities where we suspected that there had
been a recording error (e.g. through external
knowledge) but the database did not show it
(n=31) Most of these were insufficently broad pro-
gram assignments. For instance, CVE-2001-0235
[19] and CVE-1999-1048 [20] describe vulnerabil-
ities that probably affect a broad number of
UNIXes but were only assigned to a few. We
tagged these vulnerabilities for future analysis but
did not correct them.

The most serious problem with the data we found was
that many programs were listed with "." as the affected
version. This means that ICAT did not know which ver-
sions were affected. In some cases, "." was listed along
with explicit version numbers, in which case we simply
ignored the "." entry. In cases where the only affected
version was "." that program was ignored (though the
vulnerability was retained as long as some valid pro-
gram could be found). To the extent to which this pro-
cedure introduces error it makes vulnerabilities appear
younger than they in fact are and therefore biases the
data in favor of the effectiveness of vulnerability find-
ing. Section 6.8.1 contains the results of our attempts to
compensate for this problem.

6.3 Estimating Model Parameters
Using the ICAT data, we attempted to derive the model
parameters. There are a number of confounding factors
that make this data difficult to analyze. First, many vul-
nerabilities appear in multiple programs and versions.
Thus, it is difficult to talk about "vulnerability density"
in a given program, since neither programs nor vulnera-
bilities are totally independent. Second, vulnerabilities
were introduced both before and during the study

period, and so we have both left and right censoring.
In order to provide robustness against these con-

founding factors, we analyze the data from two angles:

• The program’s eye view in which we examine all
the vulnerabilities in a given version of a specific
program, regardless of when the vulnerability was
introduced.

• A vulnerability’s eye view in which we examine
the time from vulnerability introduction to vulner-
ability discovery, reg ardless of which programs it
was in.

We first consider data from the perspective of each
affected program.

6.4 A Program’ s Eye View
The obvious question to ask is "What is the rate at
which vulnerabilities are found in a given program."
For example, consider Microsoft Windows NT 4.0,
released in August 1996. NT 4.0 had a fixed set of vul-
nerabilities, some already present in earlier revisions,
most introduced in that release. We can then ask: how
many of those vulnerabilities are found as a function of
time. Because this gives us a fixed starting point, this
approach is susceptible to right but not left censoring.
However, it has two major problems:

1. Because the same vulnerabilities appear in multi-
ple programs and multiple versions, it is not possi-
ble to analyze every program as if it were an inde-
pendent unit.

2. Any individual program is not likely to have that
many vulnerabilities, thus giving us low statistical
power.

In order to keep the amount of interaction to a mini-
mum, we focus on four program/version pairs, two
open source and two closed source. These pairs were
chosen to minimize interaction, while still allowing us
to have a large enough data set to analyze. For instance,
we chose only one of the Windows/IE group, despite
there being large numbers of vulnerabilities in both
Windows and IE, because the two sets of vulnerabili-
ties are highly related.

Note that in this case the age being measured is the
age of the program, not the age of the vulnerability.
Thus, if a vulnerability was introduced in Solaris 2.5
but is still in Solaris 2.5.1, we’re concerned with the
time after the release of Solaris 2.5.1, not the time since
first introduction in Solaris 2.5. Note that if the bug
finding process is not memoryless, this biases the
results so that bug finding appears more effective than
it actually is, as investigators have already had time to
work on the bugs that were present in earlier versions.
Conservatively, we ignore this effect.



Vendor Program Version #Vulns ReleaseMonth

Microsoft Windows NT 4.0 111 August 1996

Sun Solaris 2.5.1 106 May 1996

FreeBSD FreeBSD 4.0 39 March 2000

RedHat Linux 7.0 51 August 2000

Figure 7Programs for analysis

Figure 8 shows the vulnerability discovery rate for each
program as a function of age. For the moment, focus on
the left panels, which show the number of vulnerabili-
ties found in any giv en period of a program’s life
(grouped by quarter). Visually, there is no apparent
downward trend in finding rate for Windows NT 4.0
and Solaris 2.5.1, and only a very weak one (if any) for
FreeBSD. This visual impression is produced primarily
by the peak in quarter 4. RedHat 7.0 has no visually
apparent downward trend.
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Figure 8Vulnerability discovery rate by programs

Moving beyond visual analysis, we can apply a number
of statistical tests to look for trends. The simplest pro-
cedure is to attempt a linear fit to the data. Alternately,
we can assume that the data fits a Goel-Okumoto
model and fit an exponential using non-linear least-
squares. Neither fit reveals any significant trend. In
fact, the data for Windows NT 4.0 is so irregular that
the non-linear least-squares fit for the exponential
failed entirely with a singular gradient. The results of
these regressions are shown in Figure 9. Note the
extremely large standard errors and p values, indicating
the lack of any clear trend.

Linear Fit Exponential Fit

Program Slope Std. Err. p θ Std. Err p

Windows NT 4.0 .0586 .107 .589 - - -

Solaris 2.5.1 -.0743 .0529 .171 48.5 34.8 .174

FreeBSD 4.0 -.308 .208 .167 12.1 11.0 .292

RedHat 7.0 -.627 .423 .172 9.72 9.35 .325

Figure 9Regression results for program cohort data

An alternative approach is to use the Laplace factor
trend test [21]. The Laplace factor test assumes that
data is being produced by a Poisson process and checks
for homogeneity of the process. Laplace factor values
with greater than 1.96 (indicated by the top dotted
lines) indicate significantly decreasing reliability
(increased rates of vulnerability finding) at the 95%
level (two-tailed). Values below -1.96 (the bottom dot-
ted line) indicate significantly decreased rates of vul-
nerability finding. The results of the Laplace factor test
are shown in the right hand set of panels. The Laplace
factor only indicates a statistically significant increase
in reliability at the very end of each data set. In view of
the amount of censoring we are observing, this cannot
be considered reliable.

Based on this data, we cannot reject the hypothesis
that reliability of these programs is constant overall,
and certainly cannot confirm that it is increasing. If
anything, it appears that reliability decreases somewhat
initially, perhaps as a result of increased program
deployment and therefore exposure to vulnerability dis-
coverers.

6.5 A Vulnerability’ s Eye View
The other option is to start from the point of vulnerabil-
ity introduction and ask what the probability is that a
vulnerability will be discovered at any time t after that.
In order to analyze the data from this perspective, we
first need to determine when a vulnerability was first
introduced. We used the following procedure to deter-
mine the introduction date for each vulnerability:

1. Determine the first version of each program to
which the vulnerability applies. We did this by
numeric comparison of version numbers. Where
affected versions were listed as "and earlier", "pre-
vious only" (applies to versions before the listed
version), etc. we used the earliest known version.

2. Look up the release date for each such earliest ver-
sion. Where release dates were not available, the
program was ignored.

3. Select the program/version pair with the earliest
release date (there may be multiples, for instance
when a program appears in multiple Linuxes). If
no such date was available, we ignored the



vulnerability. This problem occurred for approxi-
mately 110 vulnerabilities. An alternative proce-
dure would be to look for a later version of the
same package. Section explores this approach with
essentially similar results to those presented here.

This procedure is susceptible to a number of forms of
error. We briefly introduce them here, and will discuss
them further in the course of our analysis. First, the
ICAT database has errors. As noted previously, we cor-
rected them where possible. However, there are almost
certainly less obvious residual errors. In particular, vul-
nerability finders often seem to only check recent ver-
sions for a vulnerability. Thus, versions 1.0 through 4.0
may be affected but only versions 3.0-4.0 might be
reported. We would expect this effect to make vulnera-
bilities look more recent than they in fact are. We
ignore this effect, which makes vulnerability lifetime
appear shorter and therefore the vulnerability depletion
rate appear higher, thus favoring disclosure.

Second, it is not clear how to categorize vulnera-
bilities which appear in multiple programs. A vulnera-
bility may affect more than one program for a number
of reasons:

1. It may be present in a common ancestor of both
programs, such as BSD 4.4 vulnerabilities which
appear in both NetBSD or FreeBSD.

2. A package may be included in multiple operating
systems. For instance, GCC is included in both
Linux and *BSD.

3. Multiple programmers may have made the same
mistake. For instance, both KDE and Internet
Explorer failed to check the X.509 Basic Con-
straints extension and are listed in
CAN-2002-0862 [22].

Situation 3 appears to happen quite rarely so we simply
ignore it and treat it as part of our experimental error.
In situation 1 it seems appropriate to treat the first
appearance inany package as the date of vulnerability
introduction. In situation 2, we might wish to treat pro-
grams which are packages but not part of the operating
system separately. We hav e not currently done so but
consider it a topic for future work (see Section 6.8.4).

We also detected 24 vulnerabilities where the earli-
est known publication date preceded the introduction
date. In some cases, this is no doubt a result of vulnera-
bilities which are present in some version lumped
under "unknown". In others, they are simply data
errors. We discarded these vulnerabilities. At the end of
this procedure, 1391 vulnerabilities remained.

Finally, in some situations we were unable to get
precise release dates. The finest granularity we are con-
cerned with is a month and so as long as we know the
release month that is sufficiently precise. In <15 cases,
all prior to 1997, we were able to get dates only to year
resolution. We arbitrarily assigned them to the month
of June, because that was the middle of the year. How-
ev er, as our year cohorts begin in 1997, this should
have no effect on the analysis of this section or of Sec-
tion 6.4. Figure 10 shows the number of vulnerabilities
by time of introduction. Note the two big peaks in mid
1996 and early 1998. These correspond to the release
of Windows NT 4.0 and IIS 4.0 respectively.
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Figure 10 Number of vulnerabilities by year of introduction

6.5.1 Vulnerability Production rate b y Age
Figure 11 shows the number of vulnerabilities found by
age of the vulnerability at time of discovery. There is a
fairly clear downward trend, which might be indicative
of depletion. However, note that this data is extremely
subject to sampling bias, as our data is from the limited
time window of 1997-2002. Because new programs are
introduced during this period, and therefore cannot
have vulnerabilities older then five or so years, we
would expect to see fewer older vulnerabilities than
newer vulnerabilities. In addition, if popularity of pro-
grams is a partial factor in how aggressively programs
are audited, we would expect interest in programs to
wane over time, thus producing the appearance of
increasing reliability. Finally, as is evident from Figure
10, the rate of vulnerability introduction is highly vari-
able over time. As all these factors tend to overestimate
the depletion rate, fitting the data directly is problem-
atic.
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Figure 11 Discovered vulnerabilities by age

6.5.2 Disco ver y rate b y year cohort
One way to minimize the sampling bias mentioned
above is to look only at vulnerabilities from fairly nar-
row age cohorts, such as a single year. Figure 12 shows
the distribution of vulnerability ages for vulnerabilities
introduced in the years 1997-2000, in the same format
as Figure 8.

Once again, we can see that there is no obvious
visual trend, except possibly in vulnerabilities intro-
duced in 1999. Our regressions confirm this. Both lin-
ear regression and our exponential fit show no signifi-
cant negative trend for any year but 1999. The results
are shown in Figure 13. Note the very large standard
errors and p values for every regression except than
1999 and the linear regression for 2000 (which is sub-
ject to a large amount of censorship).
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Figure 12 Vulnerability discovery rate by age cohorts

Linear Fit Exponential Fit

Year Slope Std. Err. p θ Std. Err p

1997 -.107 .102 .307 68.4 87.4 .443

1998 -.319 .218 .160 40.8 33.5 .240

1999 -1.25 .218 <.01 9.46 1.93 <.01

2000 -1.04 .493 .0565 16.7 11.6 .175

Figure 13 Regression results for age cohort data

Similarly, the Laplace Factor only shows signifi-
cant increases in reliability for 1999 and the last 2 quar-
ters of 1998 and 2000 (where it crosses the negative
dotted confidence boundary). The last 2 quarters of the
1998 and 2000 data should be disregarded because the
data from those quarters is extremely subject to the
same kind of sampling bias. For instance, only pro-
grams which were published in the early part of 2000
could possibly have vulnerabilities that were as old as
36-42 months by the end of the study period.

The lack of a significant trend in the cohort data
should make us quite skeptical of the claim that there is
indeed a trend towards increasing reliability. The data
does not allow us to discard the hypothesis that the vul-
nerability finding rate is essentially constant.

6.6 What if we ignore the bias?
In the previous sections, we analyzed cohort-sized sub-
sets of the data in order to attempt to remove bias.
However, this also had the effect of reducing the size of
our data set and therefore the statistical power of our
techniques. What happens if we ignore the bias and
simply use the entire data set as-is? As we indicated
previously, this overestimates the amount of vulnerabil-
ity depletion, thus providing a result biased in favor of
disclosure.

As Figure 11 shows a generally downward trend,
we should either fit a Goel-Okumoto model or an S-
shaped Weibull model (to account for the initial rise in
the number of vulnerabilities discovered.) The G-O
model was fit via least squares estimation and the
Weibull model was fit using maximum-likelihood esti-
mation. Figure 14 shows the result of fitting these two
trend lines.

Both trend lines are superimposed on Figure 11.
Figure 15 shows the exponential model parameters and
Figure 16 shows the estimated model parameters for
the Weibull model. Note that although the exponential
fit is not perhaps as nice visually as we might like, we
were able to validate it by working backwards to the
implied number of original vulnerabilities and then
using Monte Carlo estimation to simulate the vulnera-
bility finding process. The results are fairly similar to
our measured curve, indicating that the exponential is a
reasonable model. Note that the larger data set here



allows us to aggregate the data into months instead of
quarters, thus the exponential scale constants are a fac-
tor of three larger than with the cohort regressions of
Figures 9 and 13.
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Figure 14 Fitted overall vulnerability decay curves

A 31. 3
θ 48.6

N = Aθ 1521

Figure 15 Exponential fit parameters for vulnerability age at
discovery time

α (shape)1.25
β (scale)36.6

Figure 16 Weibull fit parameters for vulnerability age at dis-
covery time

Figure 17 shows the cumulative distribution functions
for the probability that a vulnerability will be found by
time t given these fit parameters.
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Figure 17 Probability that a vulnerability will be found

As mentioned above, this estimate ofpr is very likely
to be an overestimate because of sampling bias.

6.7 Are we depleting the pool of vulnera-
bilities?

We are now in a position to come back to our basic
question from Section 5: to what extent does vulnera-
bility finding deplete the pool of vulnerabilities. The
data from Sections 6.5 and 6.4 provides only very weak
support for a depletion effect. Even under conditions of
extreme bias, the highest depletion estimate we can
obtain from Section 6.5.1, is that the half-life for vul-
nerabilities is approximately 2.5 years. However, no
depletion whatsoever cannot be ruled out given this
data. In that case, the probability of rediscovery pr

would be vanishingly small.
The conclusion that there is fairly little depletion

accords with anecdotal evidence. It’s quite common to
discover vulnerabilities that have been in programs for
years, despite extensive audits of those programs. For
instance, OpenSSH has recently had a number of vul-
nerabilities [23] that were in the original SSH source
and survived audits by the OpenSSH team.

6.8 Sources of Error
In any analysis of this type there are a large number of
potential sources of error. We discuss the known
sources in this section.

6.8.1 Unknown Versions
As indicated in Section 6.2.2, a number of the program
versions were listed as ".", meaning "unknown ver-
sion". In approximately 15% of our data points time of
first introduction was therefore somewhat indetermi-
nate. We discarded these data points in our initial anal-
ysis. As a check for bias, we manually investigated all
of these vulnerabilities and were able to determine ver-
sion numbers for approximately 100 (8% of the total
data set). We reran our regressions with largely similar
results to the original data set. With this change, the
2000 cohort linear regression is now barely significant
(p = . 0446) instead of barely insignificant (p = . 0565).

6.8.2 Bad Version Assignment
One problem with the introduction version algorithm
described in Section 6.5 is that some programs do not
issue version numbers in strict sequence. For instance,
FreeBSD for some time maintained the 3.x and 4.x
branches in parallel. Because we use version number as
our primary sort, in some unusual cases this can make
vulnerabilities appear younger than they in fact are,
thus making disclosure look more attractive.

For instance, a vulnerability which appeared only
in FreeBSD 4.1 and FreeBSD 3.5 would be recorded as
"introduced" in 3.5, even though 4.1 was released



previously. Note, however, that a bug which also
appeared in 3.4 would get the correct introduction date
because 3.4 preceded 4.1. Handling this issue correctly
is difficult because in some sense these code branches
are different programs. In practice, there is no signifi-
cant impact on the results because this misassignment
occurs rarely. We double-checked our results by com-
paring the oldestknown version to the assigned ver-
sion and only found this form of misassignment in 10
cases. Rerunning our overall regressions using the ear-
liest known introduction dates produced essentially
equivalent results. Note that these assignment problems
have no real impact on the analysis in Section 6.4.

6.8.3 Announcement Lag
From 2001 on, ICAT started using the date that entries
were entered in ICAT as the "published before" date,
replacing the previous standard of "earliest mention".
This is a potential source of bias, making vulnerabili-
ties appear older upon publication than they in fact are.
In order to assess the magnitude of this potential bias,
we subtracted 2 months (which seems to be the maxi-
mum common lag) from each vulnerability age and
repeated the overall exponential regression. This pro-
duced a rate constant ofθ = 44. 2, which is approxi-
mately 10% lower than our original estimate of the rate
constant, but still within the confidence boundaries.

When we reanalyzed the age cohort data with this
lag, year 2000 also becomes significant. The program
cohorts still show no significance with this lag. Other
manipulations of the data show slightly differing signif-
icance patterns. It’s common to see significance under
somemanipulations of the data and this kind of insta-
bility to exact data set choice is generally a sign that
what is being observed are artifacts of the analysis
rather than real effects. Nevertheless, in the future we
would like to determine exact publication dates for
each vulnerability in order to confirm our results.

6.8.4 Vulnerability Severity
The severity of the vulnerabilities in ICAT varies dra-
matically. Some vulnerabilities are trivial and some are
critical. It is possible that serious vulnerabilities are
discovered quickly whereas non-serious ones leak out
slowly. In order to test this hypothesis, we repeated our
regressions using only the vulnerabilities that were
ranked as having "High" severity in ICAT. This pro-
duced a slightly slower depletion rate (θ = 53. 6) and
the individual age and program cohort regressions
showed little evidence of depletion. With the exception
of 1999, the linear trend lines are not significantly non-
zero—and in some cases non-significantly positive. In
addition, the Laplace factors are generally within

confidence limits. Thus, if anything, severe vulnerabili-
ties are depleted more slowly than ordinary vulnerabili-
ties.

6.8.5 Operating System Effects
Some vulnerabilities in ICAT are listed as correspond-
ing to a given operating system revision but actually
correspond to a piece of software that runs on that ver-
sion (e.g., Exchange on Windows NT 4.0), but arenot
listed under the actual program name as well. This pro-
duces a false introduction date corresponding to the
introduction date of the operating system instead of the
package. Inspection suggests that this is a relatively
small fraction of the vulnerabilities and there is no
good reason to believe that this would be a source of
systematic bias rather than random error. Howev er, we
are currently considering ways of controlling for this
sort of error. One approach we are considering is to
manually go through the database and discover the
exact status of each vulnerability. We hav e not done
this yet, however.

A related problem is vulnerabilities which are
listed both under a operating system and non-operating
system packages. In many cases (e.g., OpenSSL), these
programs are bundled with a given operating system. In
such cases, as long as we have release dates for both
the package and the operating system (which we do for
most of the popular packages), then we are generally
able to determine the correct vulnerability introduction
date. In some cases, when the package is not bundled,
however, this will yield an incorrect introduction date.
Re-analyzing the data with data points listed under
both an Operating Systems and a non-Operating Sys-
tem package (n = 225) removed yielded essentially the
same results.4

6.8.6 Effor t Variability
One possible problem with this analysis is that the
amount of effort expended on any giv en program may
vary throughout its lifetime, thus affecting the rate at
which vulnerabilities are found. Unfortunately, the only
metric we currently have for the amount of effort being
expended is the number of vulnerabilities found, which
is our measured variable. Thus, we cannot control for
this effect. The overall level of bug finding, however,
appears to have been fairly stable (though there is much
inter-month variation) over the period 1999-2003, as
shown in Figure 5.

4. Thisassignment is a little rough because we were not
able to identify the nature of some rare packages and a
few were clear errors (e.g., "IBM A/UX"). However, this
should not significantly change the results.



6.8.7 Different Vulnerability Classes
Another source of error is the possibility that new vul-
nerability classes are being discovered. Thus, for
instance, it may be that as soon as Foo Overflow errors
are discovered, a rash of them are found in IE, but then
all the easy ones are quickly found and no more Foo
Overflow errors are found. This would be an instance
of strong non-randomness in vulnerability discovery
order. There doesn’t seem to be enough data to repeat
our analysis stratified by vulnerability category, but the
overall ICAT statistics [24] suggest that the pattern of
vulnerabilities found has been fairly constant over the
period 2001-2003.

6.8.8 Data Errors
Aside from the other sources of error listed in the pre-
vious sections, there is the general problem of errors in
the ICAT database leading to incorrect conclusions. We
have attempted to identify all the sources of systematic
error and believe that the manual procedure followed in
Section 6.2.2 allows us to remove the obvious entry
errors. However, ICAT is manually maintained and
therefore we should expect that there will be errors that
made their way into the analysis. We do not believe
that this invalidates the basic conclusions. However, a
larger data set with more precise data might yield evi-
dence of effects which this study did not have sufficient
power to resolve.

7 Is it w or th disc losing vulnerabilities?
Before we address the question of whether vulnerabil-
ity finding is worthwhile, we first address a more lim-
ited question: is disclosure worthwhile, even ignoring
the cost of vulnerability finding? The combination of
equation (4) and the analysis of Section 6 can be used
to answer this question. In order to do this, we need to
consider the two possibilities from Section 6.7:

• Vulnerabilities are not being depleted.

• Vulnerabilities are being slowly depleted, with a
half-life of about three and half years.

We will examine these two cases separately.

7.1 No Depletion
If there is no vulnerability depletion, then there are
effectively an infinite number of vulnerabilities andpr

approaches zero. If this is correct, then the right half of
equation (4) is always greater than the left half and dis-
closing vulnerabilities is always a bad idea, no matter
what the relative sizes ofCpriv andCpub. Thus, if there
is no depletion, then disclosing vulnerabilities is always
harmful, since it produces new intrusions (using the
newly disclosed vulnerabilities) and there is no

compensating reduction in intrusions from vulnerabili-
ties which would have been discovered by black hats.

In practice,pr = 0 is clearly unrealistic, since vul-
nerabilities are occasionally rediscovered. What is
more likely is that the assumption of Section 5 that vul-
nerabilities are found in random order is not strictly
correct. Rather, some vulnerabilities are sufficiently
obvious that they are rediscovered but there is a large
population of residual vulnerabilities which is not sig-
nificantly depleted. In this case, the assumptionpr

would be non-homogenous but small or zero for most
vulnerabilities.

7.1.1 How many additional intrusions are
created b y disclosure?

If vulnerability disclosure increases the number of
intrusions, than we would like to estimate the size of
the increase. As shown in Figure 3, if we disclose we
expect to incur costCpub. The expected value for the
cost of intrusions if we don’t disclose is
pr (Cpriv + Cpub). If, as we have argued, pr is vanish-
ingly small, then the additional cost of intrusions cre-
ated by disclosure isCpub—the entire cost of intrusions
that resulted from our disclosure.

7.2 Slow Depletion
Consider the possibility that vulnerabilities are being
slowly depleted. If we assume that all vulnerabilities
will eventually be found, thenpr = 1 and equation (4)
would seem to indicate that disclosure was a good idea.
However, equation (4) ignores the effect of time. In
general, if a vulnerability is not yet being exploited,
most people would prefer that if a vulnerability must be
disclosed it be disclosed in the future rather than now
(see the end of this section for discussion of vulnerabil-
ities that are already being exploited).

In welfare economics and risk analysis, this con-
cept is captured by the discount rated [25]. The basic
idea is that a dollar today is only worth 1− d next year
(to feed your intuition, think of the interest you could
have earned if you had the dollar today). There is a lot
of controversy about the exact correct discount rate, but
standard values range from 3% to 12% annually. Giv en
an annual discount rated, we can compute the value
any number of months in the future using a simple
exponential function with rate constantlog(1 − d)/12.
Multiplying by CBHD we get equation (10).

CBHDe
−

log(1−d)t

12 (10)

In order to evaluate the effect of disclosure, we
need to compute the expected value of the cost, which
is simply the cost of a disclosure at timet multiplied by



the probability of a disclosure at timet, integrated over
all values oft. 5

Using an exponential model, this gives us Equation
(11).

t=∞

t=0
∫ CBHD pr (t) * e

−
log(1−d)t

12 dt (11)

We can evaluate this by plugging in the fit parameters
from Figure 15. Depending on the choice ofd, this
gives us values ranging from .89CBHD (d = 3%) to
. 66CBHD (d = 12%) with our exponential model. In
other words, unless black hat disclosure is 12% worse
(1/. 89≈ 1. 12) than white hat disclosure (ford = 3%)
then the societal effect in terms of intrusions is actually
worse than for white hat disclosure, even if we ignore
the cost incurred in finding the vulnerabilities. The situ-
ation is more complicated with the Weibull model
because it is not memoryless and therefore the shape of
the pr curve depends on the age of the vulnerability.
Table 18 shows some sample values depending on the
age of the vulnerability using the fit parameters from
Figure 16. Thus, for instance, the expected present cost
of future disclosure of a vulnerability found at age 12
months is . 93CBHD assuming a 3% discount rate.

Discounted Cost as fraction ofCBHD

3% 12%Vulnerability Age

(Months)

0 .92 .72

12 .93 .75

24 .93 .77

36 .94 .78

48 .94 .79

60 .94 .79

Figure 18 Expected values for disclosure costs with Weibull model

For two reasons, it seems unlikely that black hat

5. Notethat we are assuming here that the real cost of
some future intrusion is the same as that of a current
intrusion, which implicitly assumes that the number of
vulnerable machines is the same as well. This is of course
not true, but then some programs becomeless popular
instead of more over time, and for the overall argument
we don’t know what kind of program we are dealing
with. In addition, the real cost of patching, which likely
represents a substantial fraction of the cost of a published
vulnerability and which we are ignoring here, goes up
with the size of the installed base.It would be interesting
to repeat this analyis for some hypothetical bug in a num-
ber of real commonly deployed pieces of software for
which we know the popularity curve and the patching
cost.

disclosures are 10% worse than white hat disclosures
(let alone 52% worse if we assume an exponential dis-
tribution and d = 12). Any significant number of
exploitations should alert administrators to the exis-
tence of the vulnerability. This is particularly true in
modern networking environments where network
forensics systems are common. Moreover, wide dis-
semination of a vulnerability in the black hat commu-
nity is likely to result in a leak to the white hat commu-
nity. It has been claimed that the average time from dis-
covery to disclosure is about one month [11]. Second,
the process of patch deployment is very slow [9] and
therefore vulnerabilities persist long past disclosure,
increasing the total number of intrusions.

Note that if a vulnerability is already being
exploited in the black hat community, then the
cost/benefit analysis is somewhat different, since dis-
closure has an immediate benefit as well as an immedi-
ate cost. However, in the case where we are not aware
of any such explanation, as the probability of rediscov-
ery is low, the a priori probability that the vulnerability
has already been discovered is correspondingly low.
Therefore, in the absence of information that the vul-
nerability is previously known, we should behave as if
we are the first discoverers.

7.3 The Bottom Line
If the effort we are currently investing in vulnerability
finding is paying off, it should be yielding some mea-
surable results in terms of decreasing defect count. In
order to ensure that we were able to see any such
effect, we have made a number of assumptions favor-
able to the usefulness of vulnerability finding:

1. All vulnerability rediscovery is by black hats (Sec-
tion 4)

2. All vulnerabilities are eventually rediscovered
(Section 6.1)

3. We ignore the fact that vulnerabilities in obsolete
versions are often listed only for newer versions
(Section 6.5)

4. We ignore the sampling bias introduced by our
limited study period (Section 6.5.1)

Despite this built-in bias, we find little evidence that
vulnerability disclosure is worthwhile, even if the cost
of the vulnerability finding process itself is ignored.
The "best case" scenario supported by our data and
assumptions is that the process of vulnerability finding
slightly increases reliability. Howev er, even if there is
such a increase, when we factor in discounting our
model suggests that there is no net benefit in disclosing
vulnerabilities. The bottom line, then, is that based on
the evidence we cannot conclude that vulnerability



finding and disclosure provides an increase in software
security sufficient to offset the effort being invested.6

8 Polic y Implications
Given that the data does not support the usefulness of
vulnerability finding and disclosure, how should we
allocate our resources?

8.1 Deemphasiz e Vulnerability Finding
Clearly, we do not have enough evidence to definitively
say that vulnerability finding is not a good idea. How-
ev er, giv en the amount of effort being invested in it, not
being able to find a significant effect is troublesome. At
this point, it might pay to somewhat deemphasize the
process of finding vulnerabilities and divert that effort
into recovering from the vulnerabilities that are found,
through user education and improved technology for
response.

8.2 Impr ove Data Collection
We can only have limited confidence in these results
because the data set we are working from is in quite
bad shape. To a great extent this is the result of the
somewhat informal nature of vulnerability reporting
and database maintenance. If we are to have a definitive
answer to the question of whether vulnerability finding
is useful we will need better data. If we start recording
data more carefully and formally now, in five years or
so we will be in a much better position to answer this
kind of question.

8.3 Impr ove Patching
A major reason why vulnerabilities are so dangerous
ev en after patches are available is that the rate of patch-
ing is so slow [9]. If automatic patching were more
widely used, then theCpub would decrease and disclo-
sure would look more attractive. Conversely, cracker’s
ability to quickly develop and deploy malware based on
disclosures or patches increasesCpub and makes disclo-
sure look less attractive. Even with automatic patching,
a fast worm, such as Staniford et al.’s Warhol Worm
[26], released shortly after disclosure would do a large

6. Note that if vulnerabilities can be fixed without dis-
closing them, then the cost/benefit equation changes and
it’s possible, though not certain, that vulnerability finding
and fixing pays off. This kind of private fixing is gener-
ally impossible with Open Source systems but may be
possible with Closed Source, for instance by releasing
regular service releases with patches in them. It is unclear
whether one could make such releases hard enough to
reverse engineer that they did not leak information about
the vulnerabilities they fixed. Rumors persistently circu-
late in the security community that black hats indeed do
reverse engineer binary patches in order to discover the
vulnerabilities they fix.

amount of damage. Accordingly, any measures which
improve the rate of patching and make fast develop-
ment of malware more difficult are likely to pay off.

8.4 Limitations of This Analysis
Our analysis here has focused on vulnerability finding
as a method of reducing the number of intrusions.
However, it should be noted that it may be valuable in
other contexts. In particular, research into new classes
of vulnerability, as well as automatic discovery of vul-
nerabilities and defenses against attack may very well
be worthwhile. Our argument here is primarily limited
to the routine publication of vulnerabilities that are new
instances of known classes of vulnerability.

In addition, even if vulnerability discovery and dis-
closure does not increase overall social welfare, it
almost certainly advances the interests of certain con-
stituencies. In particular, discoverers of new vulnerabil-
ities may be able to profit from them, either via public-
ity or by sale of associated services such as vulnerabil-
ity information. However, we need to consider the pos-
sibility that the interests of these constituencies are in
opposition to those of society as a whole, making this a
classic negative externality situation.

9 Conclusions and Future Work
If finding security defects is a useful security activity,
then it should have some measurable effect on the soft-
ware security defect rate. In this paper, we hav elooked
for such an effect and only found very weak evidence
of it. In the best case scenario we are able to make, the
total defect count has a half life of approximately 2.5
years. However, our data is also consistent with there
being no such effect at all. In either case, the evidence
that the effort being spent on vulnerability finding is
well spent is weak.

We see several likely avenues for future research.
First, it would be good to attempt to obtain more pre-
cise measurements for a larger group of vulnerabilities
in order to confirm our rate measurements. It would
also be valuable to cross-check our results using
another database of vulnerabilities, perhaps with better
data on the date of publication. If better data were
available, it would allow us to discriminate more finely
between alternative reliability models. In particular, it
would be interesting to fit to a BAB model [7]. Second,
it would be useful to quantify the total decrease in wel-
fare with better measurements of the number of and
cost of intrusions which are due to undisclosed vulner-
abilities. Finally, it would be useful to start with a
known group of security vulnerabilities all present at
the same time and measure the rate at which they are
independently rediscovered, thus avoiding the left-cen-
soring problems inherent in this work.
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