
Competitive and strategic effects in the timing of patch release
Ashish Arora, Christopher M. Forman, Anand Nandkumar1 and Rahul Telang

{ashish,cforman, anandn,rtelang}@andrew.cmu.edu
Carnegie Mellon University

First Draft: October 2005
This version: May 2006

Abstract:

The relationship between quality and market concentration has long been of interest to both

policy makers and economists. In our application, we focus on the effect of competition on one

aspect of software quality – time taken by software vendors to release patches that fix

vulnerabilities. We empirically estimate how the extent of competition affects the timing of patch

release using a novel dataset assembled for the purposes of this research. Competition in the

context of information security has two separate effects: First is the disclosure threat effect - the

possibility of any of the other vendors that are also affected by the same vulnerability, releasing

patch earlier, thereby implicitly disclosing the vulnerability. Second is the competition effect,

which is the effect of end users penalizing laggards, by comparing responses of vendors that also

sell a similar product. Our results suggest disclosure threat hastens the arrival of a patch by about

24 days, whereas competition effect hastens patch release by 52 days on average. Further, firms

with larger sales (of the product) patch faster: a 10% increase in firm sales is associated with an

earlier patch release by about 2.5 days. Therefore, our results support the notion that greater

competition results in better ex-post service quality. Further, to the extent that earlier patch

release minimizes consumer loss, our results suggest that when higher number vendors are

affected by the same vulnerability end user losses are lower, thereby leading to better social

outcomes.

Keywords: Vulnerability disclosure, quality, competition.

1 Corresponding author

1. Introduction:

According to CERT/CC, the number of software vulnerabilities2 reported to CERT/CC in year

2005 alone was about 5990. The rapid increase in the number of vulnerabilities discovered in

software over the past few years has strengthened the argument that poor software quality of

software is an artifact of high concentration that is typical of most software markets. Of particular

concern is the potential for firms with market power to deliberately under provide quality, in our

context ex post support. This can occur due to a variety of reasons: First, information goods

industries like software, offer significant early mover advantages, resulting in incentives to

release products earlier despite the product not being “ready” for release. Although, early release

would also require substantial investments in ex post product support as pointed out by Arora,

Caulkins and Telang (2005) investment in ex post support could also depend on the firms’ market

power. Arguably higher amounts of concentration could result in lower investments in ex-post

support. Specifically, firms with market power could deliberately under provide quality in an

effort to maximize profits again implying under-investment in ex-post support. Second, lack of

user willingness to pay for software quality could also result in lower investment in ex-post

product support. If poor product quality is due to high market concentration then introducing

more competition should lead to higher quality of software, ceteris paribus. Conversely if under

provisioning of quality is due to lack of user willingness to pay then competition should have

little impact on quality. In this paper we provide empirical evidence on the impact of competition

on vendors’ incentives to release the patches faster.

The relationship between quality and market concentration has long been of interest to both

policy makers and economists. Our focus is on the effect of competition on one aspect of

software quality – time taken by software vendors to release patches that fix vulnerabilities. We

empirically estimate how the extent of competition affects the timing of patch release using a

novel dataset comprising of software vulnerabilities reported to CERT/CC and vendors response

to such vulnerabilities. The time taken by vendors to release patches upon discovery of a

vulnerability as a measure of software quality (security) because (i) The timely availability of

patches critically determines the amount of losses incurred by consumers and hence the value

consumers derive from the software product. Therefore, the timing of patch is very similar in

nature to ex-post service quality (ii) Since software intrinsically require patches for quality

2 A vulnerability is a software bug that can be taken advantage of by an attacker to compromise an end
user’s computer.

upgrade or to fix vulnerabilities (temporary quality degradation) timing of patch release is often

viewed by end users as an important element of ex post product support (iii) Unlike many other

measures of quality, timing of patch release is more reliably measured.

Given the rapid increase in the number of reported software vulnerabilities3 and the consequent

economic damages to end users, the factors that contribute to the timing of vendors’ patch release

has been a matter of great interest among members of the software community. End users suffer

losses from software vulnerabilities when malicious users or “attackers” take advantage of

vulnerabilities to inflict monetary losses4 to end users. Patches released by vendors enable end

users to prevent attackers from exploiting these vulnerabilities. The sooner the patch is released,

the lower are customer losses. Many members of the security community have recommended

regulation aimed at providing incentives for software vendors to minimize the time window of

exposure to end users. However the type of regulation that would minimize social losses from

vulnerabilities would critically depend upon proper understanding of factors that condition the

timing of patch release to vulnerabilities. Despite its importance this is an area that has lacked

empirical evidence mainly due to the non-trivial effort involved in data collection. Although the

focus of this work is to understand how the timing of patches varies with the number of

competitors, we also provide valuable empirical evidence on the factors that condition the timing

of vendors’ patch release.

Our results suggest that competition results in better quality as evidenced by quicker time to

release patches by vendors to the extent of about 52 days on an average. Interestingly, our results

also brings to focus another important issue of “threat of disclosure” (disclosure threat hereafter)

which is the issue of how public disclosure of a flaw that is common to many products affects

vendors’ responses to vulnerabilities. Our results suggest that disclosure threat results in an earlier

patch release by about 24 days. These results demonstrate that competition does have an effect on

ex post product support provided by software vendors.

The rest of the paper is structured as follows: We first provide some background on the domain of

software vulnerabilities and highlight key problems in estimating the impact of competition on

the timing of patch release in section 2. In the process we also provide intuition for our

3 According to CERT/CC, the number of vulnerabilities reported in year 2005 alone was about 5990.
4 These monetary losses are typically due to loss of confidential information that might be stolen by
attackers, losses due non-availability of computing infrastructure as a result malicious use by attackers and
loss of integrity of information as a result of attack.

identification strategy. Section 3 reviews related literature. Section 4 provides a description of the

data sources used in empirical analysis. We conclude and discuss limitations of our results in

section 7.

2. Software vulnerabilities and patches

Unlike many physical goods, problems related to software can be mitigated even after

product release. This makes patches an intrinsic part of any software life cycle. Vendors try to

introduce the product relatively early in the product development cycle even though early product

release might entail greater investments in ex post support (Arora, Caulkins and Telang 2005).

This makes both vulnerabilities in software as well as patches that fix vulnerabilities intrinsic to

any “shrink wrapped” software. Patches are also perceived by end users as a very important

component of ex-post product support and an important signal of quality. This is because the

probability of a malicious attacker exploiting a specific vulnerability to compromise end user

computers is positively correlated with the amount of time the vulnerability remains without a fix.

Thus, the timing of patches critically determines the extent of end user losses. In the absence of

other vendors also being affected by the same vulnerability, two considerations drive the timing

of the vendor’s patch – (i) the extent to which end user losses affect the future demand for the

product and, (ii) the cost to fix the vulnerability. Typically, an early fix entails higher costs but

also reduce customer losses and, hence also, reduce reputation loss and loss of future sales.

Vendors, thus choose an optimal time to release patch to minimize their total losses.

In many cases, a newly discovered vulnerability could affect many different products

(“common” vulnerability hereafter). A common vulnerability is typically a result of a shared code

base or design specification, or, due to a proprietary extension of a widely used software

component. When vendors share a common vulnerability, vendors are still driven by the

considerations outlined above to determine the optimal time to release patch although there are

some important additional considerations. When a vulnerability is known to be common to many

products, if one vendor releases patch for its product, it implicitly publicly discloses the

vulnerability in the products manufactured by other vendors (that also share the same

vulnerability). This presumably results in higher end user losses to other vendors. In short,

presence of many vendors for a vulnerability acts as a disclosure threat. Presumably, higher

disclosure threat would shrink the time to patch (we call this as disclosure effect). Also, the

literature on product quality and competition (reviewed below) suggests that when there are many

competing products, end users have more choices, and thus, future sales of a product are likely to

be more sensitive to perceived quality. In our context, this implies that end users can compare

vendor responses and penalize laggards (competition effect). This view is consistent with

arguments put forth by researchers understanding similar issues in other industries, e.g. Suzuki

(2000); and Cohen and Mazzeo (2004). Thus presence of many vendors may also reduce the

patching time (because of “competition effect”). Note that competition effect emanates only from

vendors that also operate in the same product market or sell a similar product (we call such

vendors as rivals). However disclosure threat effect emanates from all vendors that are affected

by the common vulnerability regardless of whether they are rivals. In the paper we identify these

effects separately and show how competition and disclosure threat effects influences vendors’

time to patch vulnerabilities.

3. Literature review:

Our work draws from two varied streams of literature – literature on competition and

quality and literature on information security specifically related to vulnerability disclosure.

A. Competition and quality

From a theoretical perspective the relationship between quality and competition has been

well studied. Swan (1970) argued that quality (interpreted in terms of durability of a product) was

independent of market structure. This independence result intrigued many researchers and many

subsequent works reversed the independence finding. Spence (1975) for instance argued that an

unregulated monopolist’s provisioning of quality is likely to be biased away from the social

optimum. A monopolist would provide optimum quality only when elasticity does not vary with

quality. Levhari and Peles (1973) show that when quality is a substitute for quantity, both quality

and quantity provided by the monopolist might fall short of those in the competitive market. Gal-

Or (1983) shows that the average quality in a market actually declines as a result of additional

entry. This is because upon entry, the ability of a single firm to segment the market declines.

Hence firms on an average produce more quantity of low quality goods to discriminate more

effectively among consumers that highly value the product. Schmalensee (1979) notes that the

outcomes of the different theoretical models are very sensitive to the assumptions made by the

models and articulates the need for empirical evidence to probe the implications theoretical work

in this area.

Understandably, given that measuring quality in an unambiguous manner is non-trivial,

empirical work on the relationship of quality and competition is not as widespread. Demberger

and Sherr (1989) provide evidence that deregulation in the legal services industry leads to greater

customer satisfaction. Dranove and White’s (1994) studied the issue of quality and competition in

hospital markets and suggested that higher market concentration invariably leads to lower quality

in hospital markets. Borenstein and Netz (1999) note that airlines were less likely to schedule

their flights at passengers’ most preferred times during the period of price regulation. Hoxby

(2000) found that metropolitan areas with more schools districts produce higher quality measured

in terms of student achievements. Mazzeo (2003) provides evidence of longer flight delays in

more concentrated airline markets. Cohen and Mazzeo (2004) in an analysis of the banking

industry find evidence of higher quality (measured in terms of number of branches) when banks

face multi-market banks as competitors as opposed to when banks face single-market banks as

competitors.

In our application, we use time to release patch of a vulnerability upon its discovery as

our measure of quality to examine the quality-competition relationship thereby providing

evidence about this relationship in the context of software industry. As with other empirical

studies in this area, our conclusions also support the notion that higher competition is associated

with an earlier patch release and hence better quality.

B. Economics of information Security

Researchers that work in area of economics of information security especially recently

have concerned themselves in understanding how vulnerability information disclosure affects

social loss from software vulnerabilities. Schneier (2000) argued that the loss from attacks, are

not only influenced by the intensity of attacks, but also on how long the vulnerability remains un-

patched. But attack intensity may also depend on whether the vulnerability is public information

as pointed out by Arora, Nandkumar and Telang (2004). In this context, Arora, Telang and Xu

(2004), develop a theoretical model to examine how an optimal disclosure policy can influence

the behavior of vendors and reduce the social cost of vulnerabilities. In particular, they show that

early disclosure of vulnerabilities is not necessarily socially optimal, though it will result in the

vendor releasing patch earlier. They consider the roles of three players, the vendor, the customers

and the social planner. The vendor trades off between the cost to develop patch and customer

loss. The customer suffers breaches as a result of being exposed to the vulnerability, especially

when no patch exists for the vulnerability. Since disclosure policy affects the vendor and

customers in conflicting ways, the role of a social planner becomes one of designing an optimal

policy such that the vendors provide a patch fast enough, at a reasonable cost. Cavusaglu et al

(2005) model the multiple vendor case and show how a policy maker should set policies.

Nizovtsev and Thursby (2005) examine the factors that influence a benign identifiers’ decision to

disclose vulnerabilities. They show that the current situation with regard to disclosure constitutes

mixed strategy equilibrium of a game in which the benign identifiers play the role of loss

minimizing agents. Choi, Fershtman and Gandal (2005) examine how vulnerabilities affect

vendors and how consumers buy software. They conclude that vendors are likely to announce

vulnerabilities when the probability of an attacker exploiting a vulnerability is relatively high and

that it is possible for vendors to announce vulnerabilities even if it is not socially optimal to

announce them.

The empirical stream of literature relating to vulnerability disclosure however is

relatively sparse. Arora, Nandkumar and Telang (2004) provide empirical evidence on the impact

of publication of vulnerabilities when disclosure is not accompanied by patches. They find that

undisclosed vulnerabilities attract the least number of attempts to breach a host, while

vulnerabilities that are disclosed without a patch attract the most number of attempts to breach a

host. To the extent that such breaches are correlated with monetary losses early disclosure could

result in substantial economic losses5. Arora, Krishnan, Telang and Yang [2005] using a dataset

assembled from CERT/CC’s vulnerability notes and SecurityFocus database, conclude that early

disclosure influences the vendor to release patch earlier with vulnerability disclosed by CERT/CC

being patched faster by vendors. Telang and Wattal (2004), find empirical evidence of firms’

incurring loss in market value, as a result of vulnerability disclosure. To our knowledge, the issue

of vendors’ response to common software vulnerabilities has not been studied by researchers and

hence marks a contribution to this literature.

4. Data and variables:

The sample for the purposes of this study was constructed from two sources. We acquired details

of software vulnerabilities from CERT/CC. Variables related to number of customer (or quantity)

was acquired from the Harte Hanks database.

4.1. Vulnerability data:

5 The CSI-FBI survey 2004, estimated the annual losses from information security incidents to be about
$1.4 billion in 2004 alone

Variables that relate to vulnerabilities were assembled from vulnerability publications of

CERT/CC. This data source lists all the vulnerabilities that were reported to it, the vendor-product

combination that was affected by the vulnerability, along with the date of publication of the

vulnerability. A typical vulnerability reporting process is as follows: An identifier reports the

presence of a vulnerability to CERT/CC. CERT/CC researches the vulnerability before contacting

the vendor and does so only if the presence of the vulnerability is authentic. Once the vendor is

notified of an existence of the vulnerability, the vendor may choose either to respond or not to

respond to CERT/CC’s information of the vulnerability. Should the vendor decide to respond to

CERT/CC’s information, the a typical response takes one of the following forms: (i) vendor

acknowledges of the presence of the vulnerability, in which case, the CERT/CC provides a

specific time window to release a patch for the vulnerability (ii) vendor responds by contending

that product(s) in question is not vulnerable, in which case CERT/CC just lists the vendor as not

being vulnerable or as vulnerable without a patch. These responses are captured in the dataset as

“status vulnerable” and “status not vulnerable” respectively. In a case where the vendor chooses

not to respond to the vulnerability, then CERT/CC records the vendor’s response as “status

unknown”. On an average, in a year, about 3000 vulnerabilities get reported to CERT/CC of

which only about 10% are published.

Our unit of observation is the vendor – vulnerability pair. From September 2000 to August 2003,

CERT/CC published a total of 526 vulnerability notes. A total of 622 different vendors were

affected by these vulnerabilities. In all, these constituted about 4659 observations. Of these, 762

observations had status “not vulnerable”, 2182 were status “unknown” while 1714, had status

“vulnerable”. We retained only observations with “status vulnerable” for the purpose of empirical

analysis.

From these, we dropped observations wherein the vendors discovered and disclosed the

vulnerability to CERT/CC of its own accord along with a patch. We also dropped observations

that represented open source vendors (since these vendors are frequently small and may not

conform to standard profit maximization notions) and vendors that are not head-quartered in USA

(since the competitive environment could be very different, and we are likely to have poor

measures of their market share). We also removed protocol vulnerabilities from the data, as these

vulnerabilities as typical fixes to such vulnerabilities involve substantial design change at the

protocol level and not just at the level of a product. This provided us with a sample consisting of

241 distinct vulnerabilities and 473 observations.

4.2. Market Data:

One of our key independent variables, quantity was collated using information in Harte-Hanks

database (HH database), an in-depth technology end-user database that collects detailed data

software consumption pattern. From 2000-2002, the survey had responses from about 58,094

organizations in the United States. Even so, it is extremely difficult to determine the number of

copies of a software product in use. Instead we use a proxy. We use the number of

establishments that bought at least one copy of the product weighted by number of employees in

the organization as our proxy for quantity (QUANTITY). For instance if 1000 establishments

own at least 1 licensed copy of Red Hat Linux, and each establishment has 500 employees, our

measure for quantity would be 500,000, which is the aggregate number of employees in those

establishments.

Weighting the number of establishments with the number of employees in the

establishment puts more weight on products used in larger organizations, and arguably provides

with us a more accurate proxy for quantity. Since the HH –database over samples certain

industry sectors we compared the number of establishments in the HH dataset with the number of

establishments in the Census and re-weighted the number of establishments in the sample to

obtain a representative sample of establishments (Please refer appendix II for a detailed

description on how we re-weighted our quantity measure). This procedure was adapted from the

procedure followed by Forman, GoldFarb and Greenstein (2005).

Table 1 Description of variables
Variable Description

DURATION Time taken by vendors to patch vulnerabilities

LOGDURATION Log of DURATION

VENDORS Total number of vulnerable vendors

LOGVENDORS Log of 1+VENDOR

INSTANT Instant disclosure

NONINSTANT Non-instant disclosure

SUPPLIER =1 if vendor is a supplier of a software component that is used by another downstream

vendor.

QUANTITY Total # of employees at customers (those that used the software) sites

LOGQUANTITY Log(1+QUANTITY)

LOGVERSIONS Log of number of versions

SEVERITY CERT/CC severity metric

LOGSEVERITY Log of CERT/CC metric.

LEADER Vendor(s) that patches before all other vulnerable vendors.

Table 1 summarizes the key variables used in the empirical analysis. These are further discussed

below.

4.3. Duration:

Our key dependent variable is DURATION, which measures the elapsed time in calendar days

from the date when the vendor came to now of the presence of the vulnerability and when the

vendor released a fix for the vulnerability. The value that DURATION takes depends on the

regime of disclosure – instant or non-instant disclosure.

Scenario 1: Instantly disclosed vulnerabilities

If the vulnerability is instantly disclosed6, DURATION is the elapsed time in days between when

the vulnerability was known public and the time the vulnerability was fixed by the relevant

vendor.

Scenario 2: Non-instantly disclosed vulnerabilities

If the vulnerability was non-instantly disclosed7, DURATION is the elapsed time between when

CERT/CC informed the vendor of the existence of the vulnerability and when the relevant vendor

issued a patch.

Our final sample comprised of 473 observations, relating to 241 distinct vulnerabilities. Of these,

about 4.2%, or about 20 observations, had no patch. 8 In our empirical analysis we use the log of

the elapsed days, LOGDURATION as our dependent variable. For the observations for which,

the vendor has not yet released a patch, we assign the highest value of the dependent variable.

Our results are unchanged when we redid the analysis by using a censored regression

specification by treating these observations as right censored (these results are not reported in this

manuscript but can however be provided upon request).

4.4. Competition:

We use LOGVENDORS, which, is the natural log of the total number of vendors listed as

“vulnerable” by CERT for a specific vulnerability to measure the effect of competition within a

6 a scenario in which, CERT/CC informs the vendor of the presence of a vulnerability when the
vulnerability was already known public
7 A scenario in which, CERT/CC disclosed the presence of a vulnerability to the vendor while the
vulnerability is unknown to the general public.
8 One aspect that must be noted about the empirical setup, is that we assign a value of 8.27 (maximum
value of log(DURATION vi)in the sample) to the dependent variable in cases where the vulnerability was
not patched by the vendor. As noted earlier, there are about 20 observations that are not patched in the
entire sample.

vulnerability. Note, that LOGVENDORS includes all vendors that are affected by the same

vulnerability. Also, this measure in itself is not sufficient to identify the effect of competition

separately from the effect of disclosure threat. The method by which identify the effect of

competition separately from disclosure threat is discussed later in the manuscript.

4.5. Vulnerability Severity measure:

In order to account for differences in severity of vulnerabilities we use the natural log of

CERT/CC’s severity measure (LOGSEVERITY), which is a number between 0 and 180, to

capture the differences in severity of vulnerabilities.9.

4.6. Vulnerability identifier:

In our dataset we also capture the party that identified the vulnerability first. This data was

gathered from CERT’s publications and other public security forums like SecurityFocus’s

bugtraq mailing list. We classified the identifier of the vulnerability into whether the vulnerability

was first discovered by a security consulting firm (CONSULTANT). In the sample, about 29%

of all vulnerabilities comprising of 71 distinct vulnerabilities were identified by security

consulting companies. Descriptive statistics for the sample are provided in table 2, provided at the

end of the paper.

<Table 2 about here>

5. Empirical evidence:

We adopt two methods to test our propositions – a comparison of sample means and a regression

framework. Though any regression framework makes it convenient to add controls, it imposes

functional form restrictions.

5.1. Identification of competition and disclosure threat effect using instant disclosure:

Our goal is to identify the effects of disclosure threat and competition separately, which in

general is difficult. We use the disclosure regime, namely instant and non-instant, as a point of

9 The set of criteria that determines the measure is available in CERT/CC’s website. The important
determinants of the measure include (i) Is information about the vulnerability widely available or known?
(ii) Is the vulnerability being exploited in the incidents reported to US-CERT? (iii) Is the Internet
Infrastructure at risk because of this vulnerability? (iv) How many systems on the Internet are at risk from
this vulnerability? (v) What is the impact of exploiting the vulnerability? (vi) How easy is it to exploit the
vulnerability? (vii) What are the preconditions required to exploit the vulnerability? See
www.kb.cert.org/vuls/html/fieldhelp

leverage to identify the effects separately. Since by definition there is no threat of disclosure

under instant disclosure the number of vulnerable vendors under non-instant disclosure

(LOGVENDORS*NONINSTANT) measures the combined effects of competition and

disclosure threats. The number of vulnerable rivals under non-instant disclosure

(LOGVENDORS*INSTANT) provides an estimate of the effect of competition. The effect of

disclosure then can be estimated by differencing the competition effect and the combined effects

in a linear estimation framework such as an OLS regression. Stated otherwise, if X is a vector of

controls, E(LOGDURATION | LOGVENDORS*NONINSTANT=1, X) provides an estimate of

the combined effects of competition and disclosure threats. E(LOGDURATION |

LOGVENDORS*INSTANT=1, X) provides an estimate of the effect of competition. The effect

of disclosure then is E(LOGDURATION | LOGVENDORS*NONINSTANT=1, X) -

E(LOGDURATION | INSTANT=1, LOGVENDORS, X).

5.2. Comparison of sample means:

We start out our empirical analysis by comparing difference in conditional means and later on in

the section estimate a more formal regression model after adding other controls. Table 2 shows

the results of comparison of sample means conditional on vulnerable rivals under instant

disclosure and vulnerable vendors under non-instant disclosure respectively. In the analysis we

assign a value of 8.27 (log equivalent of the maximum duration in the sample) to the 20

observations for which a patch was not released by the vendor. We categorize VENDORS as

HIGH if the number of VENDORS for a vulnerability was above the median and LOW

otherwise. The difference in sample means of LOGDURATION between categories, under

instant disclosure identifies the competition effect (3.42 – 4.00). The differences in

LOGDURATION between the disclosure regimes provides an estimate of disclosure threat

effect, which naturally differs depending on whether the number of vendors is high or low. The

point estimates (3.42-2.49 & 4.00-3.40) suggest that both competition and, disclosure threat are

associated with shorter time to release patches. Specifically, increase in the number competing

VENDORS from below the median to above the median under instant disclosure is associated

with an earlier patch release by vendors. This suggests that higher levels of competition are

associated with an earlier patch both in the HIGH and LOW categories, an increase in disclosure

threats are associated with earlier patches with the disclosure threat effect being higher in the

HIGH VENDOR category.

Table 2 Comparison of conditional means of LOGDURATION for by number of
vulnerable vendors (standard errors in parentheses) (*** p < 0.01** p < 0.05*p<0.10)
VENDOR S Instant disclosure

(1)
Non instant disclosure

(2)
Disclosure effect

(3)
High (Above Median)

(A)

 3.42***(0.21)

 (N=114)

 2.49*** (0.16)

(N=106)

 -0.93***

(0.29)

Low (Below Median)

(B)

 4.00 ***(0.17)

 (N=177)

 3.40***(0.24)

 (N=76)

 -0.60**

(0.29)

Competition effect (C) -0.58***

 (0.27)

-

Competition effect and

disclosure effects

(Combined effect) (D)

- -0.91***

(0.09)

Sample median of vulnerable

vendors affected

6

We use a similar procedure to understand the effect of quantity in table 3, and categorize

LOGQUANTITY into HIGH or LOW categories depending on whether LOGQUANTITY is

greater than the sample median of that variable. Overall, we find that increase in quantity is not

associated with an earlier patch release by vendors. Since it is conceivable that higher values of

LOGQUANTITY is correlated with higher number of versions supported by the vendor, we

further explore this result by further classifying LOGQUANTITY into two sub-categories

depending on whether the number of versions supported is one or more than one (median number

of versions supported by vendors in the sample). An exploration of the sample correlations of

versions with LOGQUANTITY further strengthens the hypothesis that higher quantity is highly

correlated with higher number of versions (correlation coefficient = 0.47 when

LOGQUANTITY = HIGH) while the same is not true when vendors face lower quantity

(correlation coefficient = 0.06 when LOGQUANTITY = LOW).

Table 3 Comparison of conditional means of LOGDURATION by establishment
and versions (standard errors in parentheses)

Quantity categories

(1)

Overall
(2)

versions=1
Versions=LOW

(3)

versions >1
Versions=HIG

H
(4)

Effect of
versions

(5)

LOGQUANTITY =”High” 3.44 (0.13)

(N=266)

3.25 (0.15)

(N=189)

3.89(0.25)

(N=77)

0.64

(0.29)

LOGQUANTITY =”Low” 3.41 (0.15)

(N=207)

3.49 (0.16)

(N=179)

2.97 (0.41)

(N=28)

 0.52

(0.44)

Average effect of quantity 0.03

(0.20)

-0.24

(0.22)

0.92

(0.48)

Overall impact of versions
-

3.36 (0.11)

(N=368)

3.64 (0.21)

(N=105)

0.28

(0.24)

Median LOGQUANTITY 14.83

Mean/Median Versions 1.63/1

Table 3 shows that when vendors release patch for only one version (median # VERSIONS = 1

in the sample), higher values of LOGQUANTITY is associated with an earlier patch, whereas

when vendors support multiple versions, higher values of LOGQUANTITY is associated with a

later patch. Also note that in general, HIGH number of versions is associated with a later patch

release on an average. This is consistent with anecdotal evidence that quality testing of patches on

multiple software configurations consumes the most time in a patch release process. From the

perspective of our empirical framework, this highlights the need to control for number of versions

supported while trying to understand the effect of quantity. Since with more versions vendors

would have to devote more towards testing the patch, higher number of versions supported by

vendors is likely to delay patch release by vendors. Thus, in our regression specifications we use

the log of the number of versions supported by vendors, LOGVERSIONS as one of our controls.

Table 4 Correlation between versions and LOGQUANTITY

 Correlation

coefficient

Mean versions

overall 0.29

(N=473)

1.56

LOGQUANTITY=”High” 0.47

(N=266)

2.10

LOGQUANTITY=”Low” 0.06

(N=207)

1.13

5.3. Regression results:

We now turn to an OLS specification and regress LOGDURATION on our variables of interest

(LOGVENDORS, LOGRIVAL, LOGQUANTITY and LOGVERSIONS) without any

additional controls. We interact INSTANT with LOGVENDOR to understand the effect of

competition. Likewise we also interact NONINSTANT (which is 1-INSTANT) with

LOGVENDORS to estimate the combined effect of competition and disclosure threat under non-

instant disclosure. As stated earlier we instrument for INSTANT*LOGVENDORS using

INSTANT*LOGRIVALS. The results of this specification are shown in table 5.

Table 5- OLS, dependent variable LOGDURATION
Dependent variable LOGDURATION Coefficient

(Std. Error┼)

NONINSTANT (non-instant disclosure) -0.42
 (0.40)

LOGVENDORS*INSTANT -0.17
(0.15)

LOGVENDORS *NONINSTANT -0.41
(0.15)

LOGRIVALS *NONINSTANT -

LOGQUANTITY -0.11
(0.05)

**

LOGVERSIONS 0.50
(0.19)

Constant 5.49
(0.76)

N 473

vulnerabilities 241

R-squared 0.09
*** p < 0.01** p < 0.05*p<0.10. ┼Cluster corrected on vulnerability.

The results in column 1 suggest that the effect of competition is associated with 2% earlier patch

release for a 10% increase in competitors affected, and the combined effect of disclosure threat

and competition is about a 4.1% decrease in DURATION for a 10% increase in VENDORS.

The separate effect of disclosure threat is about 2.4% (interpreted as the difference between

vendors affected under non-instant disclosure and the number of competitors affected under

instant disclosure- -4.1% + 1.7%). Moreover, a 10% higher quantity is associated with a 1.1%

earlier patch release.

Since our unit of observation is a vendor vulnerability pair, it is conceivable that observations

differ due to reasons associated with either vulnerabilities or vendors. To control for observable

differences between vulnerabilities we use two sets of measures - One, a severity identifier,

LOGSEVERITY, to control for relative severity between vulnerabilities. Two, we also use

market fixed effects to control for differences in complexity between software categories. The

market fixed effects also controls for the fact that certain markets inherently may be more

sensitive to vulnerabilities. It is plausible that vendors in such markets internalize a greater

proportion of end user losses. Since about 94% of the sample comprised of operating system and

web browser vulnerabilities we also use two market dummies10. Further, we also account for

differences between vendors using the following controls: Vendor fixed effects to control for

unobserved vendor-related factors (specifically, vendor fixed effects consist of dummy variables

Apple, Compaq, SGI, HP IBM, Mandrake, Microsoft, Red Hat, SUSE, Sun, Oracle SCO) and

SUPPLIER, to control for vendors that are primarily component providers (SUPPLIER takes a

value of 1 if the vendor is a supplier of a software component that in turn is used in another

product. For example, Macromedia Inc. that supplies a flash player plug-in component for

Netscape navigator and internet Explorer is an example of a supplier). We also control for

unobserved differences between vulnerabilities (like possible monetary damages that can accrue

should malicious attackers succeed in compromising host using a vulnerability, or, the complexity

in fixing the vulnerability) using a random effects specification. As in the sample means analysis,

we assign a value of 8.27 (log equivalent of the maximum duration in the sample) to the

dependent variable in cases where the vulnerability was not patched by the vendor.

10 Vulnerabilities that were neither operating system nor web browser vulnerabilities include antivirus,
Application Development, Application Server Software, Backup and Recovery software, database
Management, Email software, Groupware, Lan OS, Suites, System Utilities, System software, Web Design
Tools and Web Server software.

Table 6- Random effects model, dependent variable LOGDURATION

Dependent variable LOGDURATION Coefficient (Std. Error)

NONINSTANT -0.47
(0.39)

LOGVENDORS*INSTANT -0.31
(0.17)

*

NONINSTANT*LOGVENDORS -0.45
(0.01)

INSTANT*LOGRIVALS -

LOGSEVERITY -0.16
(0.13)

LOGQUANTITY -0.15
(0.05)

LVERSIONS 0.44
(0.20)

**

SUPPLIER -0.94
(0.91)

Constant 7.12
(0.90)

Vendor fixed effects(11) Yes

Market fixed effects(2) Yes

R2 (overall) 0.18

σu 1.73

N 473

vulnerabilities 241
*** p < 0.01** p < 0.05*p<0.10

We use the results shown in column 1 of table 7 to understand the effects of interest. A 10%

increase in competitors affected is associated with a 3.1% decrease in the mean time to patch

vulnerabilities while a 10% increase in disclosure threat (calculated as the difference between

NONINSTANT*LOGVENDORS and INSTANT*LOGVENDORS) is associated with a 1.4%

decrease in mean time to patch vulnerabilities. After controlling for number of versions supported

by the vendor, vendors release patch about 1.5% earlier when faced with a 10% higher quantity.

To put these results in perspective we interpret the elasticities in terms of number of days using

sample mean values of vendors affected and competitors affected. With sample mean of number

of vendors under instant disclosure being 6.22 when vulnerabilities are instantly disclosed, one

vendor corresponds to a 16% increase in rivals faced by a vendor. Given that the mean of

DURATION is about 168 days in the sample, the competition effect associated with one vendor,

is about 8.33 days on an average. If a software vendor faces about 6.22 other vendors as

competition on an average for a vulnerability, then, the average effect of competition is about 52

days. Similarly the presence of one VENDOR under non-instant disclosure corresponds to a

9.6% increase in rivals faced by a vendor. Using the sample mean value of DURATION the

presence of one VENDOR decreases the mean time to release the patch by about 2.25days on an

average due to disclosure threat If vendors on an average face about 10.43 (sample mean), the

effect of disclosure threat is about 24 days on an average.

We are working on various specifications to understand the robustness of our estimates.

5. Discussion and conclusion:

The relationship between quality and market concentration has long been of interest to both

policy makers and economists. In our application, we focus on the effect of competition on one

aspect of software quality – time taken by software vendors to release patches that fix

vulnerabilities. Using a unique dataset comprising of software vulnerabilities we examine if

higher competition results in an early patch release by software vendors. Since patching

vulnerabilities is similar to ex-post service quality implicitly we provide evidence of the effect of

competition on quality. Overall, our results suggest that vendors respond to higher competition

by patching vulnerabilities earlier. We also identify two different facets of competition namely

disclosure threat, which is the threat of any one of the vulnerable vendors implicitly making a

disclosure of vendor’s quality and “competition effect” which is the effect of the presence of

higher number of vulnerable rivals. Both, the possibility of earlier patch release by vulnerable

vendors, which implicitly is also disclosure (disclosure threat effect), and, the fear of being

penalized by end-users for late patch release relative to other vulnerable vendors (competition

effect), result in vendors releasing patches early. Also, a larger market share induces vendors to

release patches earlier. Given that empirical research on the impact of competition on quality has

been sparse due to the complexity in measuring quality unambiguously, the evidence on the effect

of competition on quality provided in this paper marks a contribution to the literature on how

competition affects quality.

Our results also have implications on consumer welfare and vulnerability disclosure policies. If

one were to believe that earlier patch release is highly correlated with lower end-user losses from

vulnerabilities, our results suggest that higher competition, results in lower end user losses,

thereby enhancing consumer welfare. Our results also show that disclosure threat can be used as a

tool to induce vendors to patch vulnerabilities faster. Thus in part, the result of disclosure threat

provides evidence that suggests that non-instant disclosure could be more welfare enhancing than

instant disclosure. For policy makers like CERT/CC and security practitioners, this result

provides valuable evidence to support non-instant disclosure, which uses disclosure threat rather

than actual disclosure. Since the usefulness of disclosure policy is only to the extent of the threat

of disclosure and its ability to make vendors respond faster to vulnerability designing an optimal

disclosure policy would involve judiciously using disclosure threat to elicit proper vendor

responses to vulnerabilities. Both of these findings are questions that have been empirically

unanswered thus far in the economics of information security literature, to the best of our

knowledge and hence also mark a contribution to the literature.

References:

Arora A., Caulkins J., Telang R. (2005) “Sell First, Fix Later: Impact of Patching on Software
Quality", Management Science (Forthcoming)

Arora A., Krishnan R, Telang R. & Yang Y. (2005) "An Empirical Analysis of Vendor Response
to Disclosure Policy," Workshop on Economics of Information Security (WEIS05), Kennedy
School of Government, Harvard University, 2005.

Arora A., Nandkumar A. & Telang R. (2004) "Impact of patches and software vulnerability
information on frequency of security attacks - An empirical analysis, Working paper," in: H.John
Heinz III school of Public Policy and Management, Carnegie Mellon University, Pittsburgh, PA,
2004.

Arora A., Telang R. & Xu H. (2004)"Optimal Policy for Software Vulnerability Disclosure," The
Third Annual Workshop on Economics and Information Security (WEIS04), University of
Minnesota, 2004.

Borenstein S. and Netz J. (1999), “Why do All the Flights Leave at 8 am?: Competition and
Departure-Time Differentiation in airline markets,” International Journal of Industrial
Organization, 20(3):344-365

Cavusoglu H., H. Cavusoglu, S. Raghunathan (2005), "Recent Issues in Responsible
Vulnerability Disclosure," Workshop on Economics and Information Security (WEIS), Boston,
MA, June

Choi J.P., Fershtman C. & Gandal N. (2005) "Internet Security, Vulnerability Disclosure, and
Software Provision," Workshop on Economics of Information Security (WEIS05), Kennedy
School of Government, Harvard University, 2005.

Cohen A. and Mazzeo M. (2004) “Competition, Product Differentiation and Quality Provision:
An Empirical Equilibrium Analysis of Bank Branching Decisions,” Finance and Economics
Discussion Series 2004-46. Washington: Board of Governors of Federal Reserve System, 2004.

Dranove D. and W.White (1994), “Recent Theory and Evidence on Competition in Hospital
Markets,” Journal of Economics and Management Strategy, 3(1):169-209.

Domberger S. and A. Sherr (1989), “The impact of competition on pricing and Quality of Legal
Services,” International Review of Law and Economics, 9:41-56.

Forman C., GoldFarb A., and Greenstein S. (2005), “How did location affect adoption of the
commercial
Internet? Global village vs. urban leadership” Journal of Urban Economics (Forthcoming)

Gal-Or E., (1983), “Quality and quantity competition” The Bell Journal of Economics, 14(2):590-
600

Hoxby C. (2000), “Does Competition among Public Scools benefit Students or Taxpayers?,”
American Economic Review, 90(5):1209-1238

Levhari D. and Peles Y., (1973), “Market Structure, Quality and Durability.” The Bell Journal of
Economics and Management Science, 4(1): 235-248

Mazzeo M. (2003), “Competition and Service Quality in the U.S. Airline Industry,” Review of
industrial Organization, 22: 275-296

Schmalensee R. (1979), “Market Structure, durability, and Quality: A Selective Survey,”
Economic Inquiry, 17: 177-196

Schneier B. (2000) "Full Disclosure and the Window of Exposure," in: CRYPTO-GRAM, 2000.
Nizovtsev, D.T., M. "Economic Analysis of Incentives to Disclose Software Vulnerabilities,"
Workshop on Economics and Information Security (WEIS05), Kennedy School of Government,
Harvard University, 2005.

Spence A.M., (1975), “Monopoly, Quality and Regulation” The Bell Journal of Economics 6(2):
417-429

Swan P.L., (1970), “Durability of Consumer Goods,” American Economic Review, 60: 884-894

Telang R. and Wattal S. (2005) "Impact of Software Vulnerability Announcements on the Market
Value of Software Vendors – an Empirical Investigation," Workshop on Economics of
Information Security (WEIS05), Kennedy School of Government, Harvard University, 2005.

 Descriptive statistics
Variable N Proportion Mean Std. Dev

Proportion of Anti-Virus vulnerabilities 5 1.06 - -
Proportion of Application Development
vulnerabilities

3 0.63 - -

Proportion of Application Server Software
vulnerabilities

15 3.17 - -

Proportion of Backup And Recovery
vulnerabilities

1 0.21 - -

Proportion of Data Base Management
vulnerabilities

15 3.17 - -

Proportion of Electronic Mail vulnerabilities 4 0.85 - -
Proportion of Groupware Software vulnerabilities 12 2.54 - -
Proportion of LAN Operating System
vulnerabilities

2 0.42 - -

Proportion of Operating System vulnerabilities 368 77.80 - -
Proportion of Suites vulnerabilities 4 0.85 - -
Proportion of System Utilities vulnerabilities 1 0.21 - -
Proportion of System/Software Management
vulnerabilities

1 0.21 - -

Proportion of Web Browser vulnerabilities 26 5.50 - -
Proportion of Web Design Tools vulnerabilities 1 0.21 - -
Proportion of Web Development Tools
vulnerabilities

4 0.85 - -

Proportion of Web Server Software vulnerabilities 11 2.33 - -
LOGQUANTITY 473 - 14.00 2.26
LOGDURATION 473 - 3.43 2.11
LOGDURATION - Instant disclosure 291 - 3.77 2.22
LOGDURATION - Non-Instant disclosure 182 - 2.87 1.80
Vulnerabilities 241 - - -
Vulnerabilities – Instant disclosure 183 - - -
Vulnerabilities – Non- Instant disclosure 79 - - -
Vulnerabilities – Non- Instant & instant 21 - - -
observations for which vendor did not issue

patch
20 - - -

vulnerabilities for which vendor did not issue

patch
15 - - -

Other vulnerable vendors 473 - 7.83 8.03
VENDORS – Instant disclosure 291 - 6.22 6.95
VENDORS - Non-Instant disclosure 182 - 10.43 8.93

SEVERITY 473 - 22.34 20.74
SEVERITY- Instant disclosure 291 - 22.09 20.57
SEVERITY- Non-Instant disclosure 182 - 22.71 19.74

of distinct vendors 30
Proportion Apple 26 5.50 - -
Proportion Hewlett Packard 45 9.51 - -
Proportion IBM (includes Lotus) 45 9.51 - -
Proportion Microsoft 77 16.28 - -
Proportion Oracle 22 4.65 - -
Proportion SCO 55 11.62 - -
Proportion SGI 22 4.65 - -
Proportion SuSE 39 8.25 - -
Proportion Sun Microsystems 43 9.09 - -
Proportion Compaq 15 3.17 - -
Proportion Redhat 60 12.68 - -
Proportion of vulnerabilities identified by CERT 9 0.04 - -
Proportion of vulnerabilities identified by

University
10 0.04 - -

Proportion of vulnerabilities identified by

Consulting company
71 0.29 - -

Proportion of vulnerabilities identified by end user 19 0.08 - -
Proportion of vulnerabilities identified by Vendor 46 0.19 - -
Proportion of vulnerabilities identified by

individual
86 0.36 - -

