
Measuring the Attack Surfaces of Two FTP Daemons

Pratyusa K. Manadhata, Jeannette M.
Wing

Carnegie Mellon University

{pratyus,wing}@cs.cmu.edu

Mark A. Flynn, Miles A. McQueen
Idaho National Laboratory

{Mark.Flynn, Miles.McQueen}@inl.gov

ABSTRACT
Software consumers often need to choose between different
software that provide the same functionality. Today, se-
curity is a quality that many consumers, especially system
administrators, care about and will use in choosing one soft-
ware system over another. An attack surface metric is a
security metric for comparing the relative security of simi-
lar software systems [8]. The measure of a system’s attack
surface is an indicator of the system’s security: given two
systems, we compare their attack surface measurements to
decide whether one is more secure than another along each
of the following three dimensions: methods, channels, and
data. In this paper, we use the attack surface metric to mea-
sure the attack surfaces of two open source FTP daemons:
ProFTPD 1.2.10 and Wu-FTPD 2.6.2. Our measurements
show that ProFTPD is more secure along the method dimen-
sion, ProFTPD is as secure as Wu-FTPD along the channel
dimension, and Wu-FTPD is more secure along the data di-
mension. We also demonstrate how software consumers can
use the attack surface metric in making a choice between
the two FTP daemons.

1. INTRODUCTION
Measurement of a software system’s security, both qualita-
tively and quantitatively, has been a long standing challenge
to the research community, and is of practical import today.
Software consumers often face the task of choosing one soft-
ware product from a set of competing and alternative prod-
ucts that provide similar functionality. For example, system
administrators often make a choice between different avail-
able web servers, IMAP servers, and FTP servers for their
organization. Several factors such as ease of installation and
maintenance, ease of use, and interoperability with existing
enterprise software are relevant to software selection; how-
ever, to consider the security of a system when choosing be-
tween alternative software systems is of heightened interest
to consumers today.

Manadhata and Wing have proposed an attack surface met-
ric to compare the security of similar software systems, i.e.,
different versions of the same system or different systems
with similar functionality [8]. Intuitively, a system’s attack
surface is the set of ways in which an adversary can at-
tack the system. Hence the larger the attack surface, the
more insecure the system. Given two systems, Manadhata
and Wing measure their attack surfaces, and compare their
attack surface measurements along three dimensions to indi-
cate whether one system is more secure than another along

each dimension. While it is very difficult to devise metrics
that definitively measure the security of software, prior work
has shown that the measure of a system’s attack surface is
a good indicator of the system’s security ([6, 7]).

In this paper, we use the attack surface metric to mea-
sure the attack surfaces of two open source FTP daemons:
ProFTPD 1.2.10 and Wu-FTPD 2.6.2. Our choice of the
FTP daemons is guided by two factors: popularity and avail-
ability of source code. We compare the attack surface mea-
surements of the two FTP daemons along three dimensions:
methods, channels, and data. Our results show that the
measure of ProFTPD’s attack surface is smaller than Wu-
FTPD along the method dimension, the same as Wu-FTPD
along the channel dimension, and larger than Wu-FTPD
along the data dimension. We partially validate the attack
surface measurements by correlating the attack surface mea-
surements of both daemons with the number of vulnerability
reports found for the daemons.

The rest of the paper is organized as follows. In Section 2, we
give a brief overview of the attack surface metric. We mea-
sure the attack surfaces of the two daemons and compare the
measurements in Section 3. We validate the measurements
in Section 4. We discuss related work in Section 5. Finally,
we conclude with a discussion of future work in Section 6.

2. ATTACK SURFACE METRIC
Intuitively, a system’s attack surface is the set of ways in
which an adversary can enter the system and potentially
cause damage. We know from the past that many attacks,
e.g., exploiting a buffer overflow, on a system take place by
sending data from the system’s operating environment into
the system. Similarly, many other attacks, e.g., symlink
attacks, on a system take place because the system sends
data into its environment. In both these types of attacks,
an attacker connects to a system using the system’s chan-
nels (e.g., sockets), invokes the system’s methods (e.g., API),
and sends data items (e.g., input strings) into the system or
receives data items from the system. An attacker can also
send data indirectly into a system by using data items that
are persistent. Specific examples of persistent data items are
files, cookies, registry entries, and database records. An at-
tacker can send data into a system by writing to a file that
the system later reads. Similarly, an attacker can receive
data indirectly from the system by using shared persistent
data items. Hence an attacker uses a system’s methods,
channels, and data items present in the system’s environ-

ment to attack the system. We collectively refer to a sys-
tem’s methods, channels, and data items as the system’s
resources.

Given the above observation, a system’s attack surface is de-
fined in terms of the system’s resources. Not all resources,
however, are part of the attack surface, and not all resources
contribute equally to the measure of a system’s attack sur-
face. In order to measure a system’s attack surface, we
need to identify the relevant resources that are part of the
system’s attack surface, and determine the contribution of
each such resource to the system’s attack surface. Manad-
hata and Wing introduce a formal entry point and exit point
framework to identify the relevant resources that contribute
to a system’s attack surface; they also introduce informal no-
tions of damage potential and effort to estimate a resource’s
contribution to a system’s attack surface [8].

2.1 Attack Surface Definition
A system’s attack surface is the subset of resources that an
attacker can use to attack the system. An attacker attacks
a system either by sending data into the system, or by re-
ceiving data from the system; hence any resource that the
attacker can use either to send data into the system or to
receive data from the system is part of the system’s attack
surface. Intuitively, the more resources available to an at-
tacker, the more ways a system can be attacked, hence the
more insecure it is. We use the entry point and exit point
framework to identify the resources that are part of a sys-
tem’s attack surface.

2.1.1 Entry Points
The methods of a system that receive data items from the
system’s environment are the system’s entry points. For ex-
ample, a method that receives input from a user or a method
that reads a configuration file is an entry point. A method
m of a system s receives data items directly if either (a) a
user or a system in s’s environment invokes m and passes
data items as input to m, or (b) m reads from a persistent
data item, or (c) m invokes the API of a system in s’s en-
vironment and receives data items as the result returned.
A method m receives data items indirectly if either (a) a
method m1 of s receives a data item d directly, and either
m1 passes d as input to m or m receives d as result returned
from m1, or (b) a method m2 of s receives a data item d in-
directly, and either m2 passes d as input to m or m receives
d as result returned from m2. A method m of s is a direct
entry point if m receives data items directly, and an indirect
entry point if m receives data items indirectly.

2.1.2 Exit Points
The methods of a system that send data items to the sys-
tem’s environment are the system’s exit points. For exam-
ple, a method that writes into a log file is an exit point. A
method m of a system s sends data items directly if either
(a) a user or a system in s’s environment invokes m and re-
ceives data items as results returns from m, or (b) m writes
to a persistent data item, or (c) m invokes the API of a
system in s’s environment and passes data items as input to
the API. A method m sends data items indirectly if either
(a) m passes a data item d as input to a method m1 and m1

passes d either directly or indirectly to s’s environment, or

(b) a method m2 receives a data item d as result returned
from m and m2 passes d either directly or indirectly to s’s
environment. A method m of s is a direct exit point if m
sends data items directly, and an indirect exit point if m
sends data items indirectly.

2.1.3 Channels
An attacker uses a system’s channels to connect to the sys-
tem and attack the system. Hence a system’s channels act
as another basis for attacks. Specific examples of channels
are TCP/UDP sockets and pipes.

2.1.4 Untrusted Data
An attacker uses persistent data items either to send data
indirectly into the system or receive data indirectly from the
system. A system might read from a file after an attacker
writes into the file. Similarly, the attacker might read from a
file after the system writes into the file. Hence the persistent
data items act as another basis for attacks on a system. An
untrusted data item of a system s is a persistent data item
d such that a direct entry point of s reads from d or a direct
exit point of s writes into d.

2.1.5 Attack Surface
By definition, the relevant resources that contribute to the
attack surface are the set of entry points and exit points,
the set of channels, and the set of untrusted data items.

Definition 1. A system’s attack surface is the triple, 〈M,
C, I〉, where M is the set of entry points and exit points,
C is the set of channels, and I is the set of untrusted data
items of the system.

2.2 Attack Surface Measurement
A naive way of measuring a system’s attack surface is to
count the number of resources that contribute to the attack
surface. This naive method that gives equal weight to all
resources is misleading since all resources are not equally
likely to be used by an attacker. For example, a method, m1,
running as root is more likely to be used in an attack than a
method, m2, running as non-root; hence m1’s contribution
to the attack surface is larger than m2.

We estimate a resource’s contribution to a system’s attack
surface as a damage potential-effort ratio where damage po-
tential is the level of damage the attacker can cause to the
system in using the resource in an attack, and effort is the
effort the attacker spends to acquire the necessary access
rights in order to be able to use the resource in an attack.
The higher the damage potential, the higher the contribu-
tion; the higher the effort, the lower the contribution.

2.2.1 Damage Potential-Effort Ratio
We use informal means to estimate damage potential and
effort in terms of the attributes of a resource. The estimates
depend on the kind of the resource, i.e., method, channel,
or data item.

An attacker gains the same privilege as a method by using
a method in an attack. For example, the attacker gains
root privilege by exploiting a buffer overflow in a method

running as root. Hence we estimate a method’s damage
potential in terms of the method’s privilege. The attacker
uses a system’s channels to connect to a system, and send
(receive) data to (from) a system.

A channel’s protocol imposes restrictions on the data ex-
change allowed using the channel, e.g., a TCP socket allows
raw bytes to be exchanged whereas a RPC endpoint does
not. Hence we estimate a channel’s damage potential in
terms of the channel’s protocol.

The attacker uses persistent data items to send (receive)
data indirectly into (from) a system. A persistent data
item’s type imposes restrictions on the data exchange, e.g., a
�file can contain executable code whereas a registry entry

can not. Hence we estimate a data item’s damage potential
in terms of the data item’s type.

The attacker can use a resource in an attack if the attacker
has the required access rights. The attacker spends effort
to acquire these access rights. Hence for the three kinds of
resources, i.e., method, channel, and data, we estimate the
effort the attacker needs to spend to use a resource in an
attack in terms of the resource’s access rights.

We assign numbers to the values of the attributes to com-
pute a numeric damage potential-effort ratio. We describe
a specific method of assigning numbers in Section 3.2

2.2.2 Attack Surface Measurement Method
We measure a system’s attack surface along three dimen-
sions by estimating the total contribution of the methods,
the total contribution of the channels, and the total contri-
bution of the data items to the system’s attack surface.

1. Given a system s and its environment, we identify a
set, M , of entry points and exit points, a set, C, of
channels, and a set, I, of untrusted data items of s.

2. We estimate the damage potential-effort ratio, derm(m),
of each method m ∈ M , the damage potential-effort
ratio, derc(c), of each channel c ∈ C, and the damage
potential-effort ratio, derd(d), of each data item d ∈ I.

3. The measure of s’s attack surface is the triple
〈

∑
m∈M

derm(m),
∑

c∈C

derc(c),
∑

d∈ I

derd(d)〉.

3. ATTACK SURFACE MEASUREMENT OF
FTP DAEMONS

In this section, we describe the process of measuring the
attack surfaces of the two FTP daemons. ProFTPD was
implemented and is maintained by the ProFTPD project
group [10]. Wu-FTPD was implemented and is maintained
at Washington University [4]. The ProFTP codebase con-
tains 28K lines of C code and the Wu-FTP codebase contains
26K lines of C code; we only considered code specific to the
FTP daemon.

Figure 1 shows the steps followed in measuring the attack
surfaces of the FTP daemons. The dotted boxes show the
steps done manually, and the solid boxes show the steps
done programmatically. The dotted lines represent manual

inputs required for measuring the attack surfaces of the FTP
daemons.

3.1 Identification of Relevant Resources
Step 1 of the attack surface measurement method requires us
to identify the resources that contribute to a system’s attack
surface. We identified the set of entry points and exit points,
the set of channels, and the set of untrusted data items for
both code bases. We determined the privilege levels of the
set of entry points and exit points, the protocols of the set
of channels, the types of the set of untrusted data items,
and the access rights levels of all the resources. Most of the
substeps in this step are automatic and we used off-the-shelf
tools for the automated steps.

3.1.1 Entry Points and Exit Points
Recall that a direct entry point of a system is a method
that receives data items directly from the system’s environ-
ment. As proposed by DaCosta et al. [3], we assume that a
method of a system can receive data items from the system’s
environment by invoking specific C library methods. Hence
a method is a direct entry point if the method contains a
call to one of the specific C library methods. For example,
a method is a direct entry point if it contains a call to the
read method defined in unistd.h. The only exception is the
main method. The main method is a direct entry point as
the attacker can invoke main and pass inputs to main. We
identified a set, Input, of C library methods that a method
must invoke to receive data items from the environment.
We identified the methods of the ProFTP and the Wu-FTP
codebases that contained a call to a method in Input as the
direct entry points.

A direct exit point of a system is a method that sends data
items directly to the system’s environment. We assume that
a method can send data items to the system’s environment
by invoking specific C library methods. We identified a set,
Output, of C library methods that a method must invoke
to send data items to the environment. We identified the
methods of the ProFTP and the Wu-FTP codebases that
contained a call to a method in Output as the direct exit
points. Please see the appendix for the Input and Output
sets of methods.

An indirect entry point of a system is a method that receives
data items from a direct entry point. An indirect exit point
of a system is a method that sends data items to a direct exit
point. We could not find a source code analysis tool that
enables us to determine whether a direct entry point m1 re-
ceives a data item d from the environment and a method
m receives the data item d from m1, or whether a method
m passes a data item d to a direct exit point m2 and m2

sends the data item d to the environment; hence we could
not identify the indirect entry points or the indirect exit
points in an automated manner. Hence our measurements
are under-approximations of the measure of the attack sur-
faces.

We also identified the privilege level and access rights level
of the entry points and the exit points. On a UNIX system,
a process changes its privilege through a set of uid-setting
system calls such as setuid. If a process changes its privilege
level from p1 to p2 by invoking a uid-setting system call,

Source
Code

Call graph Generator
and Analyzer

Compilation and
Execution

Run time
Monitoring

Attack Surface
Computation

Numeric Values

Annotated
Source Code

Running
Process

Entry Points and
Exit Points

Attack Surface
Measurements

Channels

Untrusted
Data Items

Input and Output Methods

Annotation

Figure 1: Attack surface measurement steps.

then we assume that all methods invoked before the uid-
setting call run with privilege p1 and all methods invoked
after the uid-setting system call run with privilege p2. For
example, if a process starts with root privilege, and then
drops privilege by calling setuid, then all methods that are
invoked before setuid have root privilege, and all methods
that are invoked after setuid have non-root privilege.

In order to determine the access rights levels, we identified
the code locations where authentication is performed in both
codebases. We assumed that any method that is invoked
before user authentication takes place has unauthenticated
access rights, and any method that is invoked after successful
authentication has authenticated access rights.

We annotated each codebase to indicate the code location
where privilege levels and access rights levels change. We
generated the call graph of the annotated code using cflow

[2]. From the call graph, we identified the methods that
contained a call to a method in Input or a method in Output,
and the privilege and access rights of each such method.
These identified methods are the direct entry points and
direct exit points respectively.

The methods in the ProFTP codebase run with root and a
special UNIX user, proftpd, privilege. The methods are ac-
cessible with root, authenticated user, unauthenticated
user, and anonymous user access rights. The methods in the
Wu-FTP codebase run with root and authenticated user
privilege. The methods are accessible with authenticated

user, unauthenticated user, anonymous user, and guest

user access rights. We show the number of direct entry
points (DEP) and direct exit points (DExP) for each privi-
lege level and access rights level pair in Table 1.

3.1.2 Channels
We used runtime monitoring to identify the channels opened
by both FTP daemons, and to determine the protocol and
access rights level of each such channel. Both daemons open
a TCP channel so that FTP clients can communicate with
the daemons. These channels are accessible with remote

unauthenticated (RU) user access rights. We show the
number of channels for each protocol and access rights (AR)
pair in Table 2.

3.1.3 Untrusted Data Items

ProFTPD
Privilege Access Rights DEP DExP
root root 8 8
root authenticated 12 13
root unauthenticated 13 14
proftpd authenticated 6 4
proftpd unauthenticated 13 6
proftpd anonymous 6 4

Wu-FTPD
Privilege Access Rights DEP DExP
root authenticated 9 2
root unauthenticated 30 9
authenticated authenticated 11 3
authenticated unauthenticated 11 3
authenticated anonymous 27 14

Table 1: The number of direct entry points and di-
rect exit points in both codebases.

ProFTPD Wu-FTPD
Protocol AR Count Protocol AR Count
TCP RU 1 TCP RU 1

Table 2: The number of channels opened by both
daemons.

We used runtime monitoring to identify the untrusted data
items of both FTP daemons, and the type and access rights
level of each untrusted data item. Both daemons read or
wrote persistent data items of file type; both daemons used
configuration files, authentication files, executable files, li-
braries, and log files. The files of ProFTPD can be accessed
with root, proftpd user, and world access rights. The files
of Wu-FTPD can be accessed with root, authenticated

user, and world access rights. Recall that an attacker can
use an untrusted data item in an attack by reading or writing
the data item. Hence we identified the read and the write
access rights levels of a file separately; we counted each file
twice, once for the read access rights level, and once for the
write access rights level. We show the number of untrusted
data items for each data item type and access rights (AR)
pair in Table 3.

ProFTPD Wu-FTPD
Type AR Count Type AR Count
file root 12 file root 23
file proftpd 18 file auth 12
file world 12 file world 9

Table 3: The number of untrusted data items used
by both daemons.

3.2 Estimation of a Resource’s Damage
Potential-Effort Ratio

Step 2 of the attack surface measurement method requires
us to estimate a resource’s contribution to the attack surface
in terms of a damage potential-effort ratio. In the following
paragraphs, we describe a specific method that we used to
quantify the damage potential-effort ratios of the resources
of both FTP daemons.

We imposed a total ordering among the privilege levels such
that a method running with a higher privilege level in the to-
tal ordering has a higher damage potential. We assigned nu-
meric values to the privilege levels in accordance to the total
ordering, i.e., if a privilege level, p1, is greater than a privi-
lege level, p2, in the total ordering, then we assign a higher
number to p1 compared to p2. For example, we assumed
a method running as root has a higher damage potential
than a method running as authenticated user; hence root

> authenticated user in the total ordering, and we as-
signed a higher number to root than authenticated user.
Similarly, we assigned numeric values to channel protocols,
data item types, and access rights levels. We estimated a
resource’s damage potential-effort ratio from the numeric
values assigned to the resource’s damage potential and ef-
fort. For example, we estimated the damage potential-effort
ratio of a method from the numeric values assigned to the
method’s privilege and access rights level.

We assigned the following total ordering among the set of
privilege levels: root > proftpd > authenticated. A method
running with proftpd privilege in ProFTPD has access to
all the files on the FTP server, hence we assumed a method
running as proftpd user has higher damage potential than
a method running as authenticated user. We assigned the
following total ordering among the set of access rights lev-
els of the methods: root > authenticated > anonymous =
unauthenticated = guest. Both FTP daemons have chan-
nels with only TCP as the protocol and remote unauthenticated

access rights; hence assigning a total ordering was trivial.
Also, both FTP daemons have untrusted data items of file
type only; hence assigning a total ordering was trivial. We
assigned the following total ordering among the access rights
levels of the data items: root > proftpd > authenticated

> world. The proftpd user is a special user, hence we as-
sumed the attacker spends more effort to acquire proftpd

access rights compared to authenticated access rights. We
show the numeric values in Table 4.

3.3 Attack Surface Measurements
Step 3 of the attack surface measurement method requires us
to estimate the total contribution of the methods, the total
contribution of the channels, and the total contribution of

Method Privilege Value Access Rights Value
root 5 root 5
proftpd 4 authenticated 3
authenticated 3 anonymous 1

unauthenticated 1
guest 1

Channel Protocol Value Access Rights Value
TCP 1 remote unauth 1
Data Item Type Value Access Rights Value
file 1 root 5

proftpd 4
authenticated 3
world 1

Table 4: Numeric values assigned to the values of
the attributes.

the data items to the attack surface. We estimated the con-
tribution of each of the three kinds of resources for both FTP
daemons using the number of relevant resources identified in
Step 1 and the numeric values assigned in Step 2. From Ta-
ble 1 and Table 4, the total contribution of the methods of
ProFTPD is (16 × (5

5
) + 25 × (5

3
) + 10 × (4

3
) + 19 × (4

1
) +

10 × (4
1
)) = 321.9. From Table 2 and Table 4, the total con-

tribution of the channels of ProFTPD is 1× (1
1
) = 1. From

Table 3 and Table 4, the total contribution of the data items
of ProFTPD is (12 × (1

5
) + 18 × (1

4
) + 12 × (1

1
)) = 21.5.

Hence the measure of ProFTPD’s attack surface is the triple
〈312.99, 1.00, 21.50〉. Similarly, the measure of Wu-FTPD’s
attack surface is the triple 〈392.33, 1.00, 17.60〉. We show
the attack surface measurements in Figure 2.

Figure 2: Attack surface measurement results.

Wu-FTPD has a higher measure along the method dimen-
sion as it has a larger number of methods running with root

privilege and accessible with unauthenticated user access
rights. Similarly, ProFTPD has a higher measure along the
data dimension as it has a larger number of files accessi-
ble with world access rights. Also notice that the damage
potential-effort ratio does not make a difference along the
method dimension, but it does along the data dimension.
Wu-FTPD has a larger number of entry points and exit
points and a higher measure of the attack surface along the
method dimension; hence the naive measure of the attack
surface as the total number of entry points and exit points
(damage potential-effort ratio = 1 for all entry points and

exit points) will result in the same ordering of the daemons
along the method dimension. On the other hand, Wu-FTPD
has a larger number of data items, but a lower measure of
the attack surface along the data dimension; hence the naive
measure will result in a misleading ordering of the daemons
along the data dimension. Hence the estimation of the dam-
age potential-effort ratio is a required step in the attack sur-
face measurement process.

The attack surface metric tells us that ProFTPD is more
secure along the method dimension, ProFTPD is as secure
as Wu-FTPD along the channel dimension, and Wu-FTPD
is more secure along the data dimension. In order to choose
one FTP daemon over another, we use our knowledge of
the FTP daemons and the operating environment to decide
which dimension of the attack surface presents more risk,
and choose the FTP daemon that is more secure along that
dimension. For example, if we are concerned about privi-
lege elevation on the host running the FTP daemon, then
the method dimension presents more risk, and the attack
surface metric suggests that we choose ProFTPD over Wu-
FTPD. If we are concerned about the number of open chan-
nels on the host running the FTP daemon, then the channel
dimension presents more risk, and we may choose either of
the daemons. If we are concerned about the safety of files
stored on the FTP server, then the data dimension presents
more risk, and we choose Wu-FTPD.

The measurement of the attack surface along three dimen-
sions offers a design choice to software consumers. For ex-
ample, keeping the attack surface measurement separated
along three different dimensions, rather than coalescing the
numbers into one, lets system administrators choose a di-
mension appropriate for their need.

4. VALIDATION
In this section, we describe our process of partially validating
the attack surface measurements of both FTP daemons. We
validate the attack surface measurements along the method
dimension by correlating the measurements with the num-
ber of vulnerability reports found for each FTP daemon. A
vulnerability report for a software system describes an ex-
ploitable vulnerability present in the system. An attacker
can exploit a vulnerability if the attacker can directly or in-
directly invoke the method that contains the vulnerability.
In the entry point and exit point framework, an attacker can
invoke a method of a system directly or indirectly only by
invoking an entry point or exit point of the system. Hence
there is a relationship between a vulnerability report for a
system and an entry point or an exit point of the system. A
system’s attack surface measurement along the method di-
mension depends on the entry points and exit points of the
system; hence we expect to see a correlation between the at-
tack surface measurement along the method dimension and
the number of vulnerability reports for the system. Given
two systems, A and B, if A has a larger attack surface com-
pared to B along the method dimension, then we expect to
see a larger number of vulnerability reports for A compared
to B.

We counted the number of times ProFTPD 1.2.10 and Wu-
FTPD 2.6.2 appear in MITRE CVEs [9], CERT advisories
[1], and the SecurityFocus vulnerabilities database [12]. We

Database ProFTPD Wu-FTPD
CERT 0 1
MITRE 2 4
SecurityFocus 3 7

Table 5: There are more vulnerability reports for
Wu-FTPD 2.6.2 than for ProFTPD 1.2.10.

show the results in Table 5. Wu-FTPD has a larger attack
surface compared to ProFTPD along the method dimension;
as expected, the number of vulnerability reports for Wu-
FTPD is larger than ProFTPD.

The project goals mentioned on the ProFTPD website also
validate our measurements [11]. Many developers of ProFTPD
had spent considerable amount of time fixing bugs and adding
new features to Wu-FTPD; they realized that a redesign was
necessary to add security, configurability, and new features.
Hence ProFTPD was designed and implemented from the
ground up to be a secure and configurable FTP server.

5. RELATED WORK
Michael Howard of Microsoft informally introduced the no-
tion of attack surface for the Windows operating system [5].
Pincus and Wing [6] further elaborated, and Manadhata and
Wing [7] generalized Howard’s Relative Attack Surface Quo-
tient (RASQ) measurements. Howard, Pincus, and Wing
identified twenty attack vectors for the Microsoft Windows
operating system and compared the attack surface measure-
ments of seven versions of Windows [6]. An attack vector or
an attack class of a system is a feature of the system that
is often used in attacks on the system. For example, Win-
dows is frequently attacked through the services running in
the system. Howard, Pincus, and Wing used the history of
attacks on Windows to identify the twenty attack vectors.
Similarly, Manadhata and Wing identified fourteen attack
classes for Linux using the history of attacks on Linux, and
compared the attack surface measurements of four different
versions of Linux [7].

The Windows and Linux measurements confirm perceived
beliefs about the relative security of the different versions.
The measurement methods, however, are based on intuition
and are hard to replicate. Hence Manadhata and Wing in-
troduced the attack surface metric to measure a system’s
attack surface in a systematic manner [8]. Their attack sur-
face measurement method does not rely on the history of
attacks on a system; it measures a system’s attack surface
in terms of the system’s inherent attributes and does not
require the identification of attack vectors.

6. SUMMARY AND FUTURE WORK
In this paper, we have used the attack surface metric to
compare the security of two open source FTP daemons. Our
results indicate that software consumers can use the attack
surface metric to compare the security of similar systems.
In practice, it is the process of measuring the attack surface
that is as or more telling than the actual measurements; the
process reveals how certain design decisions impact a sys-
tem’s security. In the future, we plan to measure the attack
surfaces of two popular open source database servers.

7. REFERENCES
[1] CERT. Cert advisories. http://www.cert.org/.

[2] GNU cflow. http://www.gnu.org/software/cflow.

[3] D. DaCosta, C. Dahn, S. Mancoridis, and
V. Prevelakis. Characterizing the security
vulnerability likelihood of software functions. In Proc.
of International Conference on Software Maintenance,
2003.

[4] The Wu-FTPD Development Group.
http://www.wu-ftpd.org/.

[5] M. Howard. Fending off future attacks by reducing
attack surface. http:
//msdn.microsoft.com/library/default.asp?url=

/library/en-us/dncode%/html/secure02132003.asp,
2003.

[6] M. Howard, J. Pincus, and J.M. Wing. Measuring
relative attack surfaces,. In Proc. of Workshop on
Advanced Developments in Software and Systems
Security, 2003.

[7] P. Manadhata and J. M. Wing. Measuring a system’s
attack surface. In Technical Report CMU-CS-04-102,
2004.

[8] P. Manadhata and J. M. Wing. An attack surface
metric. In Technical Report CMU-CS-05-155, 2005.

[9] MITRE. Common vulnerabilities and exposures.
http://cve.mitre.org/.

[10] The ProFTPD Project. http://www.proftpd.org/.

[11] The ProFTPD Project. Project goals.
http://www.proftpd.org/goals.html.

[12] SecurityFocus. Securityfocus vulnerabilities.
http://www.securityfocus.com/vulnerabilities.

APPENDIX
A. INPUT AND OUTPUTMETHODS
Input = {canonicalize file name, catgets, confstr, ctermid,
ctermid, cuserid, dgettext, dngettext, fgetc, fgetc unlocked,
fgets, fgets unlocked, fpathconf, fread, fread unlocked, fs-
canf, getc, getchar, getchar unlocked, getc unlocked,
get current dir name, getcwd, getdelim, getdelim, getdelim,
getdents, getenv, gethostbyaddr, gethostbyname, gethostby-
name2, gethostent, gethostid, getline, getline, getlogin, get-
login r, getmsg, getopt, getopt internal, getopt long,
getopt long only, getpass, getpmsg, gets, gettext, getw, getwd,
ngettext, pathconf, pread, pread64, ptsname, ptsname r,
read, readdir, readlink, readv, realpath, recv, recv from,
recvmesg, scanf, secure getenv, signal, sysconf, ttyname,
ttyname r, vfscanf, vscanf}

Output = {dprintf, fprintf, fputc, fputchar unlocked,
fputc unlocked, fputs, fputs unlocked, fwrite, fwrite unlocked,
perror, printf, psignal, putc, putchar, putc unlocked, putenv,
putmsg, putpmsg, puts, putw, pwrite, pwrite64, send, sendmsg,
sendto, setenv, sethostid, setlogin, ungetc, vdprintf, vfprintf,
vsyslog, write, writev}

