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Abstract

With the development of the Internet, new kinds of massive epidemics, distributed attacks,

virtual conflicts and criminality have emerged. We present a study of some striking statistical

properties of cyber-risks that quantify the distribution and time evolution of information risks

on the Internet, to understand their mechanisms, and create opportunities to mitigate, control,

predict and insure them at a global scale. First, we report an exceptionnaly stable power-law tail

distribution of personal identity losses per event, Pr(ID loss ≥ V ) ∼ 1/V b, with b = 0.7 ± 0.1.

This result is robust against a surprising strong non-stationary growth of ID losses culminating in

July 2006 followed by a more stationary phase. Moreover, this distribution is identical for different

types and sizes of targeted organizations. Since b < 1, the cumulative number of all losses over

all events up to time t increases faster-than-linear with time according to ≃ t1/b, suggesting that

privacy, characterized by personal identities, is necessarily becoming more and more insecure. We

also show the existence of a size effect, such that the largest possible ID losses per event grow

faster-than-linearly as ∼ S1.3 with the organization size S. The small value b ≃ 0.7 of the power

law distribution of ID losses is explained by the interplay between Zipf’s law and the size effect.

We also infer that compromised entities exhibit basically the same probability to incur a small or

large loss.
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I. INTRODUCTION

The Internet has developed into a global system of interconnected computer networks

that allows the exchange of data between millions of private and public, academic, business,

and government organizations. By making possible new forms of social interactions as well

as new ways to probe them, the Internet provides a unique tool for studying the development

and the organization of an archetypical complex system.

But, as in all complex biological and social systems known to us, upgrades of capacity,

improved networking and additions of functionalities come together with its bundle of para-

sites, viruses and criminals. We ask what are the laws, in any, codifying this dynamics, and

what are the possible roles and consequences of such apparently negative developments?

In biology, there is a growing realization that evolution has been driven and shaped

by bacteria and viruses [1]. Similarly, social organizations, which are founded on laws

and regulations, and which are anchored on national (as well as sub- and super-national)

boundaries, have arguably been shaped in significant part by the need to coordinate and

cooperate in the face of disruptions emerging from within and from the outside. In this

vein, we ask what may the exploding level of criminality and of unlawful exploitation of the

Internet teach us on the organization of other complex systems? Are there robust dynamics

or universal laws that can be inferred and tested? What does the fact, that electronic crime

has appeared and developed concommittantly with the growth of the Internet, teach us on

its organization, its vulnerabilities and its future development?

Given the breadth of these questions, our contribution is to focus on a specific criminal-

ity which is now becoming rampant, the theft of personal information (ID thefts). Using

the most complete dataset from the Open Security Foundation [2], we are able to identify

an explosive growth of ID losses followed by a regime which seems to have matured into

a stationary phase. We document a very heavy-tailed power-law distribution (an often re-

ported hallmark of complex systems) of severities of ID theft events, which is robust over

all time periods and across different types of social organizations (private and public). By

quantifying the scaling of losses as a function of organization sizes, we unearth a significant

size effect.
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II. MATURATION AND SEVERITY OF ID LOSSES: NON-STATIONARY AND

STATIONARY PROPERTIES

A. Contextual data description

From early (gentle) hackers breaking in systems to demonstrate their skills, some turned

into seasoned “black hats” making money as part of an explosively growing business based

on ubiquitous Internet insecurity[3, 4]. Compared with the attacks that used to disrupt

network on a large scale, most electronic attacks nowadays extract out valuable data while

remaining quite furtive [5]. This can be likened to an electronic form of massive parasitism.

In terms of monetary value and volume, one of the largest types of data targeted by pirates

is personal identity information (ID), such as credit card numbers, social security numbers,

banking accounts, and medical files. Since each ID theft or leakage is a “loss of control” of

one’s individual private data, it can be considered already as a damaging event, forerunning

the potential realized financial and/or social losses [6]. Actually, stealing ID’s is the goal

which is common to a wide spectrum of non-destructive Internet attacks focused on profit,

from botnets to highly tailored attacks [7, 8, 9, 10]. The (uncontrolled) dissemination of

personal information raises the important social issue of people’s identity resilience in the

information technology era [5, 6]. In our quantitative study of cyber-risks, we take a ID theft

as a usable elementary unit of cyber-risks, for two main reasons. First, it provides a natural

metric of the “permeability” of information systems, guiding towards the identification of

the underlying mechanisms. Second, it offers a common basis, or currency, to compare a

large variety of heterogeneous events involving many different types of organizations.

ID loss event data have been thoroughly collected by several independant organizations.

We use the most complete dataset from the Open Security Foundation [2], that contains

956 documented events reported mainly in the USA between year 2000 and November 2008.

The catalog provides also the involved organization, the date and amount of loss (measured

as the numbers of ID stolen). Data are homogeneously sampled among various types of

organizations: business (35%), education (30%), governments (24%) and medical institutions

(10%). We define an event following the procedure described in Ref.[2, 11]. For instance,

the largest entries in the data set are (i) the discovery and disclosure of an attack over

several years of the TJX Companies with a probable exposition of more than 90 millions
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IDs (end of the event: January 2007), (ii) the Cardsystems’ hack impacting 40 million

Visa, MasterCard and American Express cardholders (June 2005), (iii) America Online (30

million credit card ID exposed in 2004), and (iv) the U.S. Department of Veterans Affair

(more than 25 million of ID stolen in 2006). While there is not warranty of completeness, our

tests below suggest that the catalog of the Open Security Foundation provides a reasonable

representative sample of the overall activity of ID thefts occurring on the Internet.

B. Transition from explosive growth to statistical stationarity

The total rate C(t) of ID theft events (measured by the number of events in a sliding

window of 50 days) is shown in the top panel of Figure 1 as a function of time. This panel

reveals the existence of two distinct phases. Starting from 2000, one can observe a dramatic

increase of the rate of attacks up to a peak reached in July 2006, followed by a plateau

thereafter. The inset shows a simple non-parametric test suggesting that the first regime was

characterized by a faster-than-exponential growth. Such singular behavior characterized by

a transient explosive growth mathematically modeled by a power law finite-time singularity

is the diagnostic of an impending change of regime [12, 13, 14], which we indeed observe

beyond the peak in July 2006. This suggests to interpret the time evolution of the rate of

ID loss events as first undergoing a non-sustainable growth followed by a maturity period

which characterizes the present epoch.

The lower panel of Figure 1 demonstrates that the distribution pdf(V ) of event sizes

(defined as the total number of ID stolen in that event) has remained stable, within statistical

fluctuations, over the whole time period investigated here from 2000 to Nov. 2008. There

is no significant difference between the probability density functions (PDF) in the growth

regime before July 2006 (red circles) and during the maturity period (blue diamonds), as

evidenced by the perfect collapse of the PDFs. Indeed, Q-Q plots of one sample as a function

of other samples and in function of the entire sample, were found to be approximately linear

with slope slope ≈ 0.9 ± 0.3. This suggests that the mechanism underlying the loss of ID

has remained stable, notwithstanding the enormous evolutions that have occurred over this

whole time period.

The two pieces of information provided by the two panels of Figure 1 imply that the rate
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N(V, t) of events of size V occurring at time t can be factorized under the form

N(V, t) = C(t) · pdf(V ) , (1)

where C(t) and pdf(V ) constitute two independent contributors to cyber-risks. The macro-

variable C(t) embodies the overall evolution of the level of threat associated with ID losses.

In other words, it provides a metric quantifying the systemic “state of insecurity” of the

Internet. In contrast, pdf(V ) measures the relative frequency of large versus small ID losses.

While the rate of attacks has varied enormously between 2000 and 2008 as shown by the

behavior of C(t) in the upper panel of Figure 1, the relative frequencies of various event sizes

has remained remarkably stable, as shown in the lower panel of Figure 1. We now turn to

the determination of pdf(V ) in order to characterize quantitatively the level of cyber risks

per event.

III. DISTRIBUTION OF ID THEFT EVENT SIZES AND CONSEQUENCES

A. Power-Law versus Stretched Exponential

Given the result of the previous section that a unique distribution pdf(V ) is sufficient

to describe the frequency of event sizes in all time windows from 2000 to 2008, we now

determine pdf(V ) by using the largest possible statistical sample including all events of this

period. Figure 2 presents the (non-normalized) empirical survival (also called complemen-

tary cumulative) distribution function F̄u(V ), defined as the probability that the number of

victims in a given event is larger than or equal to V in the range V ≥ u. Note that F̄u(V )

has a shape similar to the PDFs shown in the lower panel of Figure 1 with an approximately

straight tail in this double-logarithmic scale, suggesting a power law distribution

F̄u(V ) =
(

u

V

)b

, for V ≥ u . (2)

This power law (2) is observed over more than three decades above the lower threshold u ≈

7.104. A maximum likelihood estimation (MLE) of the exponent determines b = 0.7 ± 0.1.

If model (2) is a correct description of the survival distribution, then pdf(V ) ∼ 1/V 1+b,

which is shown as a straight line with slope −1.7 in the lower panel of Figure 1. This result

suggests that ID thefts have statistics similar to those observed in the large class of systems
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with heavy-tails, such as firm and city sizes in the social sciences or earthquakes and other

calamities in the natural sciences.

However, visual evidence and MLE are not sufficient to demonstrate that the power law

(2) is adequate to describe our statistical data of ID thefts, as discussed in several earlier

works [15, 16, 17]. To prove that the one-parameter power law (2) is sufficient, we embed it

into a broader two-parameter law that have previously been reported to provide a flexible

model of many empirical fat-tailed distribution [15] and perform a standard log-likelihood

ratio (Wilks) test. Specifically, we use the “stretched exponential” (SE) family

F̄u(V ) = exp

[

−

(

V

d

c
)

+
(

u

d

c
)

]

, for V ≥ u , (3)

where c and d are respectively the shape and scale parameters of the SE distribution. Malev-

ergne et al. [17] have shown that the power law family (2) is asymptotically embedded in

this SE family in the limit

c ·
(

u

d

)c

→ b, as c → 0 . (4)

This has two practical applications: (i) the calibration of c and d for a given u provides an

alternative determination (using (4) of the exponent b of the power law (2) if c is indeed

small (typically less than 0.3); (ii) we can use the formal likelihood ratio test of embedded

hypotheses which has been shown to hold for the power law seen as asymptotically embedded

in the SE family [17, 18], to determine whether the one-parameter power law is sufficient or

a two-parameter distribution like the SE is necessary. Inset (a) in Fig 2 shows the estimated

exponent b obtained from the maximum likelihood estimation (MLE) of c and d translated

into b via the equation bSE = c(u/d)c derived from (4), as a function of the lower threshold

u. For u ≥ 7 · 104, we obtain an excellent confirmation of the value b ≃ 0.7± 0.1 determined

from the direct MLE of the power law (2). Inset (b) in Figure 2 shows in addition the

logarithm of the likelihood ratio (LLR) of the power law versus the SE fits: for u < 7 · 104,

LLR< 0 indicating that the power law is not sufficient and that the SE is necessary; in

contrast, for u ≥ 7 ·104, the power law is sufficient and the SE is not necessary, degenerating

into the power law as the condition (4) becomes valid.
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B. Evidence for incompleteness of reported losses for small event sizes

We now discuss two possible hypotheses for the observed cross-over at u ≈ 7 · 104 below

which the distributions shown in the lower panel of Figure 1 and in Figure 2 exhibit a

significant downward curvature characterizing a deviation from the power law (2).

A first possible interpretation is that this deviation from the power law reflects the fact

that hackers are preferentially targeting large organizations offering substantial potential

gains. As a consequence, there would be practically no ID thefts involving only a few in-

dividuals. This hypothesis does not stand closer scrutiny: there is strong evidence that

millions of home computers are compromised [8] via the use of botnet deployment mecha-

nisms centrally managed by pirates [7], with each computer infection being a unique event

potentially leading to ID thefts limited to those IDs which are stored in the computer.

According to Vinton Cerf’s, 100 − 150 millions computers over a total of 600 millions are

compromised[19]. As a rough estimation, assuming that all computers have about the same

probability of being infected and counting one computer per Internet user, this implies that

about one sixth of US computers are exposed. Thus, about 50 millions US citizen are con-

stantly exposed to attacks targeting their own computer. Such events should thus provide

a huge population of small ID theft events’ which is absent from even the most complete

dataset of the Open Security Foundation [2].

C. Super-linear growth of the ID loss threat

There is another remarkable consequence deriving straightforwardly from the power law

(2) with exponent b < 1. Indeed, the smallness of the power law exponent b < 1 implies

a typical faster-than-linear growth of cumulative losses with time. Because b < 1 and

assuming that there are no upper threshold yet relevant, the mean and variance of the

number of ID losses per event are mathematically infinite. In practice, this means that their

values in any finite catalog exhibit growing random fluctuations as the number of recorded

events increases, due to the never decreasing influence of the largest event sizes. Then, the

cumulative sum V(t) of all losses over all events up to time t is controlled by the few largest

events in the catalog [20]. This leads to a faster-than-linear growth

V(t) ∼ t1/b ≈ t1.4 . (5)
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This results is solely due to the statistical mechanism that, as more events occur, some are

bound to explore more and more the tail of the heavy-tailed power law distribution (2).

Note this law (5) constitutes a lower bound, which is attained only when the rate of event

occurrences is itself not growing, as seems to be the case since July 2006.

Such faster-than-linear growths due to the pure statistical power law mechanism have

been documented in natural hazards for losses caused by floods [21] and for the cumulative

seismic energy released at regional scales [22] (see [20] for a detailed mathematical derivation

and discussion). Given the heavy-tail nature of the distribution of ID theft numbers per

event, we should not be surprised that the Internet appears more and more insecure and

dangerous, just as a result of this mechanism.

IV. IN CYBER-RISKS, SIZE MATTERS

A. Cross-sectional universality of ID losses

We have shown that the PDF of event sizes is constant over time. We now investigate

whether there exists some difference between the PDFs of event sizes in a cross-sectional

analysis of different sectors of activity, which could reveal different vulnerability character-

istics.

Our datasource uses four distinct sectors of activity: publicly traded companies (Biz),

schools and universities (Edu), governmental agencies (Gov), and medical services (Med).

Distinct regulations and industry benchmarking imply that organizations implement ho-

mogenous security processes in a given sector, but these security processes operating in a

given sector are different from those in a different sector. A priori, one could expect that

distinct factors acting in these different sectors imply dissimilar attractiveness to hackers

leading to different levels of vulnerability, which should be revealed in the statistical prop-

erties of the catalogs of ID losses. In contradiction with this anticipation, the top panel of

Figure 3 shows that one cannot reject the hypothesis that the PDFs of ID loss size per event

are identical for the four sectors Biz, Edu, Gov, Med.

If two typical organizations belonging to two different sectors are subjected to distinct

exposition and permeability threats, the remarkable conclusion suggested by the top panel

of Figure 3 is that the associated level of security just compensates for the increasing threat,
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putting all organizations at a similar overall risk level. This result is reminiscent of the

effect documented in Refs.[23, 24], that systems exposed to different distributions of attacks

converge to similar level of vulnerabilities when they try to optimize their efficiency in the

presence of constraints. This could mean that organizations, which are indeed attempting

to optimize their defenses against cyber-risks, may have already reached an intrinsic barrier.

With the evolving nature of the threats and given the complexity of the associated processes

in the presence of limited resources, the observed level of ID losses may be a robust dynamical

equilibrium that will be difficult to improve upon. This suggests that, in absence of a

fundamentally new qualitative paradigm, these cyber-risks are bound to remain with us for

the foreseeable future.

B. Size effects of vulnerabilities to cyber-risks

The bottom panel of Figure 3 plots the PDFs of victims per event sorted by target

organization sizes. There are several possible measures for the size of an organization. Here,

we take the number of employees, which correlated well with other measures [25]. The PDFs

are constructed for 269 universities [26] and 105 publicly traded companies [27]. The good

collapse of the PDFs confirms the universality of the power law distribution of event loss

sizes, as in Fig.1 and Fig. 2.

However, the tails of the PDFs are truncated at upper values which seem to grow with

the organization sizes. This size effect is better revealed by the scatter plot of the inset in

the bottom panel of Figure 3, which shows that the largest losses Vmax for a given range of

organization sizes S seem to grow with S. This visual impression is confirmed by performing

linear regressions of log V (q) as a function of log S, log V (q) = σ log S+ ǫ, where V (q) is the

99% quantile of the losses for a given organization size S. We find a stable determination

of the exponent σ ≈ 1.3 ± 0.1. This means that the largest losses for a given set of entities

of size S grow with S as Vmax ∼ Sσ ≈ S1.3.

Naively, one would have expected a linear growth with σ = 1. The faster-than-linear

law may express a combination of effects, which include a faster-than-linear growth of the

number of IDs stored in a given entity as a function of its number of employees, a bigger

exposition that makes the attacks of large entities more attractive to hackers and possibly a

greater vulnerability due to more bridges or “boundaries” with the external world which are
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more difficult to manage. The faster-than-linear law is characteristic of a size effect which

is similar to the size effects documented for instance in material failure [28] and species

fragility [29].

We now show how σ is related to the exponent b of the PDFs of event loss sizes defined

in (2). For this, we write the probability Pr(ID losses ≥ V ) to find an event with more than

V ID losses as

Pr(ID losses ≥ V ) =
∫ +∞

Smin

dS · Z(S) · Pr1(ID losses ≥ V |S) , (6)

where Smin is a minimum size for an organization to be viable, and Z(S) is the distribution of

organization sizes, well-known to follow Zipf’s law (Z(S) ∼ 1/S1+µ with µ ≈ 1) [25, 30, 31]

so that Z(S) ·dS is the number of organizations with sizes between S and S+dS. Moreover,

Pr1(ID losses ≥ V |S) is the probability to find an event with more than V ID losses in a

given organization of size S. We know one property of Pr1(ID losses ≥ V |S), namely that

it drops abruptly to vanishing values for V > C · Sσ, where C is a positive constant, as

documented above. This implies that, for a fixed V , all integrants with S < (V/C)1/σ do

not contribute to the integral. Motivated by the power law (2), we also assume a power law

shape for Pr1(ID losses ≥ V |S) with exponent b1. Putting all this together, expression (6)

becomes

Pr(ID losses ≥ V ) ≃
∫ +∞

Smin(V )

dS

S1+µ
·

1

Sb1
, (7)

with Smin(V ) ∼ (V/C)1/σ. This yields Pr(ID losses ≥ V ) ∼ 1/Sb1+
1

σ
+(µ−1). Identifying this

power law with (2) in the tail gives b = b1 +
1
σ
+ (µ − 1). Given that σ ≈ 1.3 ± 0.1, we

have 1/σ ≈ 0.77 ± 0.1. Since b = 0.7 ± 0.1, this calculation allows us to infer that the

distribution of ID losses for a given organization is fairly flat (b1 ≃ 0). In other words, the

efforts necessary to get just a few or a large number of IDs are not much different, once an

organization has been compromised. Our conclusion does not rely sensitively on the validity

of Zipf’s law. However, the value b < 1 imposes a bound on the exponent µ of Zipf’s law

which cannot be significantly larger than 1.

V. CONCLUSION

We have presented three different tests that confirm the general validity and robustness

of the probability distribution of ID losses per event (where ID losses has been taken as
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a proxy for information risks on the Internet). We showed that the PDFs are the same

irrespective of (i) the growth phase before July 2006 versus stationary regime thereafter,

(ii) the sectors of activity, and (iii) the size of targeted organisations. Returning to the

questions raised in the introduction, it is striking and a priori counter intuitive to find that all

organisations are evenly vulnerable, whatever their implemented information security. This

raises important questions concerning the tradeoff between exposition and counter-measures

in the complex evolving landscape of cyber-risks. The consequences on the evolution of the

Internet remain to be studied. This present paper provides a first partial approach of the

study of the development of the Internet and of cyber-risks taking into account their intricate

entanglement.

We have shown the existence of a size effect, such that the largest possible ID losses per

event grow faster-than-linearly with the organization size. This has led us to derive two

important consequences. First, the small value b ≃ 0.7 of the power law distribution of

ID thefts is explained by interplay between Zipf’s law and the size effect. Second, we have

found indirect evidence that compromised entities typically expose to hackers a small or large

number of IDs with basically the same frequency. This inference is very important for the

quantification of cyber risks and suggests that counter-measures should be targeted towards

building internal barriers, avoiding the “Titanic” effect of inadequate compartmentalization.
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FIG. 1: (colors online) (A) The rate of ID loss events in sliding windows of fifty days is plotted as a

function of time, revealing the existence of two successive regimes: (i) explosive growth culminating

in July 2006 (red thick line) and (ii) stable rate thereafter (blue thin line). The inset shows the

logarithm of the rate of ID loss events as a function of (tc − t) with tc = 20/07/2006, such that

a straight line qualifies a super-exponential singular acceleration ∼ 1/(tc − t)m with m ≈ 1. (B)

Scatter proxies of probability density functions (PDF) of the size of events obtained in sliding

windows of 100 days duration. PDFs obtained by binning or with the adaptive Gaussian kernel

density estimator [32] provide similar results. The size of an event is defined as the total number of

IDs lost in that event. For the sake of clarity, we show only one PDF out of every fifty PDFs. Red

diamonds (respectively blue crosses) correspond to the PDFs obtained before (respectively after)

the peak in July 2006.
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FIG. 2: (colors online) Non-normalized survival distribution (double logarithmic scale) of ID losses,

constructed using the data provided in [2] The straight black line is the fit with the power law (2)

with b = 0.7 for number of victims larger that the lower threshold u = 7 · 104. The red dashed

line is the fit with the Stretched Exponential (SE) defined by expression (3). Inset (A) shows

the dependence of the index b as a function of u obtained directly from the maximum likelihood

estimation (MLE) of the exponent of the power law (2) (crosses) and indirectly from the MLE of the

parameters c, d of the stretched exponential (SE) law (3) using the correspondence bSE = c(u/d)c

(diamonds) as described in the text. The horizontal line is at b = 0.68. Inset (B) shows the

logarithm of the likelihood ratio (LLR) of the power law versus the SE fits, which converges to

0 as u increases, thus demonstrating that the simple one-parameter power law is sufficient and

the two-parameter SE law is not necessary to explain the tail of the data set. The two grey lines

delineate the 95% confidence interval obtained by bootstrap.
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FIG. 3: (colors online) (A) Probabibility density functions of the number of victims (V ) per event

sorted by sector: business (Biz), governmental agencies (Gov), schools and universities (Edu),

medical industries (Med). Inset shows quantile-quantile plot (with 5% interquantiles) of sectors

taken against each other. Linear fit obtained for the presented lines show that we cannot reject

that slope = 1 , ruling out the hypothesis that distributions are different. (B) Probability density

functions (PDF) of victims per event sorted by sizes of the target organizations. We construct

one PDF per decade in organization sizes, i.e., we collect all events occurring for organizations of

sizes between S∗ and 10 × S∗ and construct the corresponding PDF. We then vary S∗ across the

whole sample (to avoid overlapping we take only one out of fifty PDFs). All PDFs exhibit a good

collapse, confirming the universality of the power law distribution of event loss sizes, as in Fig.1

and Fig. 2. Similarly to presented above, by performing linear regressions of (log) quantiles of all

samples, we cannot rule out that all samples are drawn from the same probability distribution.

The inset shows in double logarithmic scale a scatter plot of the losses (V ) as a function of size for

374 entities. The straight line with slope ≃ 1.3 is the best linear fit (p = 0.00 and R2 = 0.74) of

the 99% percentile of the logarithmic losses for both 269 universities (blue plus symbols)[26] and

105 publicly traded companies (red crosses)[27] as a function of organization logarithmic size.
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