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ABSTRACT
It is more difficult to find errors when source code is se-
cret. More people search for errors when source code is
public. These counteracting effects are pivotal to the ques-
tion whether openness fosters security. Errors in software
are found by people with either constructive contribution or
exploitation in mind. Focusing exclusively on this discovery
aspect, we present a probabilistic model, which allows us to
compare the open source and closed source situations.

We start out with our assumptions explained using a sim-
ple introductory model. We then extend this to what we
believe to be an adequate model of a bug-hunting process
conducted by multiple competing parties. The model em-
ploys an asymmetric race paradigm. One of the surprising
results is that even an arbitrarily large group with good in-
tentions cannot safely dominate the evil attackers. Instead,
they are limited by a significant upper bound in their win-
ning chances.

1. INTRODUCTION
What is more secure, software with secret source code or

software with open source code?— If you ask a randomly
chosen group of computer-literate people this question, pre-
pare to find yourself in the middle of a brawl on whose opin-
ion is correct.

One half of the group will argue pro open source, claiming
that the entire world becomes one united bug-hunting army,
because of everyone having access to the source code. And
since anyone can use the source and compile the executable
himself, anyone can now contribute patches to help improve
the software. This means that bugs will be found quickly,
fixes are developed fast and deployment is instantaneous,
because everyone immediately benefits from the published
corrections. Some members of our fictitious open source
faction will probably continue by stating that they never
use software with secret sources, because it is inherently
evil. They will point out the potential for manufacturers to
hide spy features in closed sources, which covertly forward
your computing habits to some government agency.

The other side will argue equally passionately against
open source, describing its products as being of lesser qual-
ity. A well-organized development process will avoid many
errors1 from the start and well-manned quality assurance
teams can catch the rest, before the software ever leaves the

1In this paper, we use “bug” and “error” interchangeably.
Furthermore, we are only interested in exploitable errors
that constitute a security vulnerability.

company. Should a vulnerability slip through and occur in
the wild, the bug is reported through dedicated channels
and a tested patch will be deployed via a world-wide update
infrastructure. Open source software is often discredited by
this group as homegrown toy-software that is written by
amateurs and not fit for productive use. The many errors
in such software are completely exposed, turning the pub-
lic source code repositories into all-you-can-eat buffets for
attackers. Because vulnerability management is not profes-
sionally organized, users are on their own to mitigate those
threats.

We will revisit some of the common arguments in more
detail in Section 2.

The truth unsurprisingly lies somewhere between those
two extremes. People who give the matter some serious
thought will weigh the pros and cons of both sides and prob-
ably answer “I don’t know.” It should be obvious by now
that the question, whether open source or closed source is
superior cannot be answered ultimately. Even the narrower
question “which is more secure” has a number of facets. The
surrounding issues of error introduction [29], prediction [28],
detection [9], classification [41] and correction as well as fix
deployment [6] and application [24] have been studied by the
research community, but rarely including a specific compar-
ison of open and closed source approaches. Error statis-
tics are discussed comparatively [17, 19], but often in non-
research contexts or even with a marketing spin. Such com-
parisons lack the scientific foundation that allows to draw
substantiated conclusions beyond the status quo.

Contributions
We limit the broad question of relative security of open and
closed source to the issue of exploitable errors in the re-
spective software and when and by whom these errors are
discovered. We do not consider the preceding process of
how the error was introduced to the code. We equally do
not consider the downstream issues of patch development
and deployment and the time it takes to do that. We make
an effort to name all our model assumptions explicitly. We
think our approach of modeling error finding is novel. Dif-
ferent from related work in the field [1, 2], we do not base
our model on error lifetimes, where probabilities are associ-
ated with the rate of errors emerging in the software. We
consider the alternative of associating probabilities with the
rate of errors found by an investigator. We believe this al-
lows us to more adequately model the asymmetry between
open and closed source. We compare our approach more
thoroughly to related work in Section 6.



We divide the people scanning a software product for er-
rors into two groups. One group has malicious intent and
watches for vulnerabilities to exploit. We call this group at-
tackers. The other group has good intentions and wants to
find errors to fix them and improve the software. We call
them defenders. Our model probabilistically captures the
process of those groups looking for errors. It assigns a win
probability to each group, according to a proper definition
what it means to win. Using this model, we evaluate both
the open source and the closed source situation and compare
the results. By open source, we designate a development
method, where the source code is publicly readable. Thus,
we use the term in a broader sense, because the original
definition by Bruce Perens [32] additionally covers licensing
issues such as distribution and derived work. With closed
source, we conversely describe a development method, where
source code is not available to the public, but only to cer-
tain employees of the software vendor. Such software is also
labeled as “proprietary” or “binary-only”.

In Section 3, we begin by presenting our assumptions and
a first probabilistic model of the error-finding process. Al-
though this introductory model is rather simple to formu-
late, the mathematical analysis is non-trivial. The full de-
tails of the solution can be found in Appendix A. Section 4
will extend this model to a more realistic one. Again, the
detailed solution has been swapped out to Appendix B. We
then use this probabilistic foundation to evaluate the core of
the common arguments from Section 2, this time based on
mathematical facts instead of opinions and emotions. We
also demonstrate and discuss in Section 5, how the model
parameters influence the outcome.

2. FACTS AND PRECONCEPTIONS
Our use of today’s computer system relies on their secu-

rity. Machines are exposed to a myriad of threats on the In-
ternet and it is often debated, whether open source or closed
source software is more adequate for such an environment.
Both camps feature a set of archetypal arguments that are
repeatedly stated by prominent advocates of the respective
ideology. In this section, we briefly compile those arguments
without comment and in Section 2.3 extract a common core
to use for our probabilistic model in the following Section 3.
More elaborate discussions have been conducted in literature
[21, 31, 42].

2.1 Pro Open Source
The statements applied in favor of open source relate it

to the process of peer-review used within the scientific com-
munity. Software is published for everyone to see and is
validated by other members of the community, just like the
papers and results of scientists undergo verification by other
experts. The same review mechanisms are driving success-
ful projects like Wikipedia. A rigorous peer-review pro-
cess is used for cryptographic algorithms, where a proposed
standard has to hold up for several years against continued
scrutiny by experts all over the world.

The quality of peer-review improves with more people per-
forming a review. Uncounted hobbyists all around the world
are joined by paid company employees to work on open
source software. In addition, students who want to learn
about the inner workings of their computers turn to open
source software to get insights. Open source is also often
used as a teaching or research vehicle. With so many people

working with the code, every hidden bug will eventually be
brought to the light. Eric S. Raymond famously wrote [34]:
“Given enough eyeballs, all bugs are shallow.”

Prevention of back doors in open source software is held as
proof for the effectiveness of the peer-review process. The
convincing case of the Interbase database system is often
cited [14]: A back door account to the database existed for
years, but was discovered shortly after the project turned
open source and published its code.

2.2 Pro Closed Source
If a bug is not discovered, there is no security problem.

This is one of the arguments employed by closed source ad-
vocates. Military and government agencies have success-
fully relied on secret cryptographic algorithms. Keeping the
source code hidden simply adds another layer of protection.
Binary obfuscation techniques [23] help to further deter at-
tackers.

The comparison to peer review in science does not hold
up, because there, reviewers have a comparable level of ex-
pertise. Most users of open source software never look at the
code, because they are no experts. Scientific results are only
relied upon after they have undergone review. Open source
software is relied upon immediately and only validated in
retrospect. This defective review process provides a false
sense of security to open source users. The claim that errors
are found quickly by disclosing code is not justified, so it is
better to hide potential vulnerabilities by keeping the source
code secret.

2.3 The Argument of Diminishing Returns
Compared to closed source, an open source process helps

the defenders, because there are more of them. On the other
hand, an open source process helps the attackers, because it
simplifies the discovery of bugs. It is interesting to see, how
both sets of arguments amount to the same central point:
Bugs are easier to discover in open source, thus more vul-
nerabilities are found. The only difference between the two
camps is whether they regard this as a good thing.

Both lines of arguments bear some truth, which might
explain the perpetual nature of this whole discussion. Com-
pared to closed source, an open source approach helps both
the attackers and the defenders. The real discussion should
focus on the question, where the equilibrium is. The in-
creased chance of an attacker finding an error clearly ben-
efits all attackers. However, the larger group of defenders
scales less beneficially: If one defender has a probability p
to find an error, d defenders obviously do not increase this
probability to dp, but rather to the combined probability
1− (1− p)d, showing an effect of diminishing return as the
group grows.2 The larger the group already is, the lower the
benefit of adding yet another defender.

2Explanation: Probabilities only sum up for disjoint
events. But for two defenders, the event of defender 1 find-
ing a bug and the event of defender 2 finding a bug are not
disjoint: The event where both find a bug is a subset of ei-
ther event, so calculating the combined probability with 2p
would account for that event twice. Here, it is conducive
to look at the failure event of no defender finding a bug.
For a single defender, the failure probability is 1 − p. For
d defenders, all of them fail with the combined probability
(1− p)d. The negation of no defender finding a bug is that
at least one defender finds a bug. This probability is the
given 1− (1− p)d.



Whether the benefit for the attackers therefore outweighs
the benefit of the defenders is not trivial, because this de-
pends on various parameters. But we now have a first math-
ematical intuition for the problem. Modeling the error find-
ing process should allow us to analyze the win probabilities
and calculate, whether reasonable values can be reached by
either group or whether one of the groups can declare vic-
tory.

3. ASSUMPTIONS AND PRECONDITIONS
Having distilled the colloquial wisdom into a concise dis-

tinction between open and closed source, we want to eval-
uate this mathematically. The basic distinction is summa-
rized:

1. There are more defenders with open source compared
to closed source.

2. It is easier for the attackers to find exploitable errors
in open source compared to closed source.

The evaluation requires a model of the real-world error find-
ing process. We abstract from the real world to reasonably
model it probabilistically. In doing so, we make assumptions
we need to formulate. For illustration purposes, we build an
initial introductory model based on these assumptions. To
calculate probabilities for attackers and defenders, we de-
fine, which potential outcomes are favorable for each group.
The section also includes a discussion of this model’s results
and weaknesses.

3.1 Model Context and Assumptions
Imagine a fictitious software project existing in two vari-

ants, one developed according to the open source paradigm,
the other being closed source. Both variants are indepen-
dent as if they existed in different universes. Apart from the
development process, they are completely identical, so any
difference in their characteristics is a result of the different
development approaches. Our analysis thus compares the
open and closed source situation for the same project, it pro-
vides no insights on the relative security of different projects.
Ranking the attacker attractiveness of different projects is
an orthogonal problem. In the following, we compile the
assumptions our model will rest upon.

Origins of Vulnerabilities
The software contains errors that surface as security vul-
nerabilities. We ignore any errors that are not exploitable,
because they are of no interest for our study. Each error is
introduced in the source code and the resulting vulnerability
is propagated to the binary. We thus ignore vulnerabilities
being introduced or masked by the compiler, because we be-
lieve those cases are extremely rare, although they do exist
[43]. We similarly ignore bugs introduced by malicious [18]
or vulnerable hardware [39], because to our knowledge no
such exploit has been reported in the wild yet, so they cur-
rently appear without practical relevance. A vulnerability
may also be introduced into a binary by an element of the
runtime environment like a platform library or a byte code
VM like Java. The operating system kernel is in this respect
treated like a library shared by all programs. We capture
such situations by choosing the faulty library or VM itself
as the project we model the error finding process for. This
is not exactly accurate as errors in a commonly used library

can surface in any software product depending on it. We
will come back to this point later in Section 5.3. For the
sake of simplicity, we ignore this peculiarity for now.

Searching for Errors
Like most complex software projects, our fictitious project
contains a number of exploitable errors. We assume errors
to be locatable rather than ambient: You can pinpoint a
specific artifact, be it a line of source code or an input to
the executable, that triggers a vulnerability, causing the pro-
gram to show behavior outside its specification. An artifact
can also stand for an architectural or design weakness in the
program. Other such artifacts are “clean”, they do not ex-
hibit vulnerable behavior. We assume that bug-hunters rec-
ognize a vulnerability once they have found it. We discuss
in Section 5.3, how to address this assumption by modeling
the expertise of the bug-hunter.

We further assume there is no way to calculate the loca-
tion of errors, otherwise their removal in the development
process would be trivial. Thus, errors are looked for with a
trial-and-error approach. If source code is used, a tangible
block of code or an individual line is picked and checked for
errors. When only a binary is available, black-box testing
selects some input for the program and checks the result-
ing behavior. The process may be supported by testbeds or
analysis tools [4], but that does not change the trial-and-
error nature fundamentally.

Error Distribution
Whenever an artifact is selected randomly and checked for
a vulnerability, the fraction of vulnerable artifacts amongst
all artifacts determines the probability that an exploitable
error has been found. We apply random artifact selection,
because we assume errors to be uniformly distributed across
all artifacts. If errors were distributed differently, a sen-
sible error-finding strategy would exploit knowledge about
the distribution to guide the search. A uniform error dis-
tribution is a bold assumption as it is easy to imagine that
errors might appear in clusters, because parts of the code
might be more complex and thus more susceptible to errors
[5, 10]. On the other hand, research has shown that lines of
code is a good predictor for errors per source code file [28],
encouraging the uniform distribution assumption at least on
a large scale. Additionally, we will mitigate this assumption
later in the paper. We also discuss related implications in
Section 5.3.

Attackers and Defenders
Recall that two groups of people scan the software for er-
rors with either good or malicious intentions. We call those
defenders and attackers. We assume the individuals within
each group to search for errors independently. There may
be small clusters of attackers or defenders that cooperate in-
ternally, but our model assumes the absence of a significant
large scale coordination. Defenders will always have both
source and binary code at their disposal. What the attack-
ers have available, depends on the development approach.

In the open source world, the attackers have all the same
means as the defenders. Consequently, we will assign the
same error finding probability to both. One could argue that
the core developers of the project, who are a subset of the
defenders, have an advantage, because they are intimately
familiar with the project organization, its mailing lists, bug



trackers and most importantly, its code. On the other hand,
the attackers can fully concentrate on finding exploitable
errors with no quality requirements. The defenders also deal
with all the other non-security bugs, tying up a portion of
their resources. To make the model feasible, we assume an
independent and uniform error finding process.

In the closed source world, attackers only have access to
the binary, not to source code. We therefore do not consider
evil insiders, who work with malicious intent within the com-
pany and thus would have source code access. We further
assume that everyone outside the company is an attacker or
a passive bystander, who is of no relevance. We ignore de-
fenders working with the binary only, like in black-box fuzz
testing [27].

Influences on the Probability
The defenders receive a contribution from the outside,
though. People submit bug reports, which helps to guide
the error finding. Analysis tools, both static [20] and dy-
namic [26] point in the same direction. They help to find
errors but cannot automatically and exhaustively find all
of them. Similarly, attackers may have better intuition or
heuristics to guide their search for vulnerabilities. We con-
sider this as part of the error finding probabilities, but not
as a fundamental piece of the model.

With open source, all tools are available to attackers and
defenders, whereas closed source limits the attacker to the
tools compatible with binaries. Thus, attacking an open
source project is strictly easier, because all tools that work
on binaries can be used by compiling the code first. In
addition to that, you can use tools requiring source code.
The attacker’s error finding probability is therefore lower
in the closed source scenario. How much lower is debat-
able, though. Current research has already demonstrated
that exploits can be generated automatically when only a
patched and an unpatched binary are available [3]. Fuzzing
[27] is another potent technology attackers can leverage to
find errors in binaries. During the Month of Browser Bugs
[25], fuzzing impressively demonstrated its usefulness to find
lots of vulnerabilities fast. Additionally, the developers may
have access to in-house tools not publicly available, but this
can happen in the open and closed source scenario.

It is challenging to express all these influences with a sin-
gular error finding probability. We will therefore vary this
probability in our evaluations (see Tables 1 and 2) to demon-
strate the sensitivity and substantiate our conclusions.

3.2 The Static Model
To help digesting the assumptions from the preceding sec-

tion we use them here by creating a simple introductory urn
model3 [16], which we call the static model. We will use
the structure of this model as a foundation of the more so-
phisticated model in Section 4. Figure 1 provides a running
illustration to support the understanding of this section.

• Each artifact (source code block, input to the bi-
nary, . . . ) of the software is represented by one ball
in the urn. Unique colors of those balls represent the
individual vulnerabilities.

3Urn Model: a thought experiment common to probability
theory, where elementary events are represented by colored
balls in an opaque urn. The stochastic process is represented
by drawing one or multiple balls from the urn, with or with-
out putting the balls back after they have been drawn.

The software contains three errors represented by differently

colored balls. Each individual attacker and defender draws

one ball from the urn. Three example outcomes are illustrated

for both teams. The attackers are successful when finding any

error (any colored ball). The defenders need to find every error

(one ball of every color) to beat the attackers.

Figure 1: The Static Model

• Non-vulnerable artifacts are represented by white
(non-colored) balls. The total number of balls deter-
mines the probability to find a ball with one specific
color, i.e. one specific error.

• Attackers and defenders draw from separate urns.
Each individual attacker and each individual defender
is allowed to draw from the respective urn once. After
drawing, the ball is immediately put back before the
next individual draws. This ensures independence of
the individuals and means that two individuals might
independently find the same error, which we consider
an effect justified in reality.

This model uses the following parameters:

p prob. for one attacker to find a specific error
q prob. for one defender to find a specific error
a number of individual attackers
d number of individual defenders
e number of errors in the software

After executing the process and allowing each individual
attacker and defender to draw once from the group’s urn, we
end up with each individual having a ball assigned. We can
now consider, which of the potential outcomes are favorable
for the attackers or the defenders.

Favorable for the Attackers
Any exploit in the wild is a failure for the security of the soft-
ware. Favorable outcomes for the attackers are those, where
any attacker has drawn a colored ball of any color. Hence,
the probability of an outcome favorable for the attacker is:

pA = 1− (1− ep)a

Favorable for the Defenders
The defenders have only secured the software sustainably
when they find all vulnerabilities. This simple verbal defi-
nition turns out difficult to formulate mathematically. Fa-
vorable outcomes for the defenders are those, where at least
one ball of each color has been drawn:

pD = e! ·
d−eX
i=0

 
d

i

!
qd−i (1− eq)i Sd−i,e



with Si,j being the Stirling numbers of the second kind.
Details can be found in Appendix A. This assumes there
are at least as many defenders as errors (d ≥ e).

3.3 Weaknesses
We believe this model—albeit intuitive at first

glance—has major deficiencies. However, many people for-
mulate a similar model when interviewed casually about
their approach to the problem. Therefore, we think the weak
points of this model can teach an important lesson.

Structural Deficiencies
The analysis of the model yields two probabilities pA and
pD, stating the chances that an outcome of the stochastic
process is favorable for the attackers or the defenders. But
these two probabilities do not sum up to 1. There are out-
comes that are neither favorable for the attackers nor the
defenders. Does such a stalemate exist in reality? We would
actually desire the favorable outcomes for the groups to be a
true partition of all possible outcomes. This requires a win
probability pW and a losing probability pL, both from the
defenders point of view, that satisfy pW + pL = 1.

Semantic Deficiencies
In our construction of the favorable outcomes, we required
the defenders to find all errors in one go. After a one-
time starting shot, every individual group member gets one
chance to look at the code and finds an error with a certain
probability. After this, everything stops and we tally the
result. The chances of the defenders finding all errors this
way are slim. But in reality, do they actually have to find
each and every error? They have to, if they want to secure
the software once and for all. But software security is not
an end state that can be reached. It is a process, in which
the continuing existence of vulnerabilities is inevitable.

Furthermore, in reality the individual attackers and de-
fenders do not just get one brief chance to look at the code.
Instead, they scan the software repeatedly until something
is found. In reality, this is a race. It is not at all important
how many bugs the defenders find. The only requirement
for software not to be exploited is for the defenders to find
each error before the attackers find it. The consequence is
that we need to extend the static model to include a notion
of time, such that we can reason about probabilities for the
order of such events.

4. MODELING THE BUG-HUNT
Before introducing a concept of time into the model, we

talk about the real-world time line of a security error [11].
Afterward, we describe the dynamic model, using assump-
tions from the preceding static model as a foundation. We
elaborate on how we enumerate the possible event orderings
and which order is favorable for what group. This leads us
to final winning and losing probabilities for the defenders,
which satisfy pW + pL = 1.

4.1 A Bug’s Life
In the good old days before the Internet became a malware

zoo, the lifetime of a bug from genesis to downfall was dom-
inated by the defenders. The software projects were buggy
back then like they are today. Maybe even more so, because
the developers were not as security conscious. However, bugs

bug introduced

bug found and fixed

patch deployed

exploit in the wild

Defender Dominance

Attacker Dominance

bug introduced

bug found and fixed

patch deployed

exploit in the wild

Figure 2: Time lines of a Bug’s Life

were typically found by team members or indicated by out-
siders through crash reports. The bug was then fixed and a
patch provided, as illustrated by the upper part of Figure 2.
With the availability of the patch came the attackers, who
were lured by a potential exploit. This was the period when
users of the software were vulnerable, because the patching
culture was not as developed as it is today.

This window of exposure, where an exploit is in the wild,
but users have not installed the patch has been narrowed
by the online software update infrastructures we now have.
Their effectiveness has been fostered by the increasing num-
ber of end users with broadband access. However, a new
threat has emerged. Driven by commercial incentives, at-
tackers became more organized and concentrate their re-
sources on exploiting errors earlier, preferably on the day or
even before the vendor has found them. In recent years, the
number of zero-day exploits is increasing dramatically [11]
and often, exploits are available for bugs that are not even
known to the defenders yet. Such an attacker-dominated
world is shown in the lower part of Figure 2. Technolo-
gies are being discussed to detect [33] and contain [6] such
exploits for yet unknown vulnerabilities. The scanning ac-
tivities of worms and other malware on the Internet are now
so prevalent [30], the term “Internet Background Radiation”
has been coined.

We think this change in the game supports our assumption
that attackers and defenders operate independently. The
attackers are no longer waiting for the defenders to make
the first move, but search for new errors themselves. The
defenders, although they get some hints from available ex-
ploits, have to debug their code on their own, because nat-
urally, the attackers do not disclose the details of their find-
ings to them. Today’s reality also supports our intuition to
model the bug-hunt as a race between attackers and defend-
ers.

4.2 Iterative Urn Model
Our enhanced model is built on many of the same assump-

tions discussed earlier for the static model. A brief summary
here serves as a recap:

• The object of study are two versions of the same soft-
ware project with the only difference that one is open
source, the other closed.

• Vulnerabilities become manifested in artifacts that can
be identified in both source and binary code.



One specific error (black ball) in the software is considered.

Time progresses downwards. In each step, every attacker and

defender draws once from the urn. Three steps are illustrated.

Whichever group finds the error (black ball) first is successful.

Here, the attackers find the error in the third step, the defend-

ers in the second. Thus, this particular outcome is favorable

for the defenders.

Figure 3: The Dynamic Model

• Selecting an artifact, you can tell, whether it represents
a vulnerability.

• Scanning over the artifacts is the only way to discover
a vulnerability, there is no way to directly calculate
which artifacts are vulnerable.

• Individual attackers and defenders independently
search for errors.

• In the open case, attackers and defenders are assigned
the same finding probability. In the closed case, the
attackers’ probability is lower.

The uniform distribution of errors is missing from the list
and will be discussed later.

The race we have to model is that of finding one particu-
lar error. If the attackers find error A, the defenders must
have found error A earlier to achieve a favorable outcome.
Whether the defenders have found errors B and C in the
meantime does not matter here, only finding or not finding
error A before the attackers matters. Therefore, we now
limit our discussion to one arbitrary but fixed error, ignor-
ing all the other errors. For this one error, the question
is: What are the odds for the defenders to find exactly this
error before the attackers find it? We represent this situa-
tion with an urn configuration similar to the static model.
Figure 3 provides a running illustration.

• Each artifact of the software is represented by one ball
in the urn. The ball representing the error of concern
is black, all other balls—non-vulnerable artifacts as
well as vulnerable ones different from the error being
considered—are white. The number of white balls in
relation to the one black ball describes the probability
to find this one specific error.

• Attackers and defenders draw from separate urns, be-
cause the groups independently work on different arti-
facts. The number of white balls in the two urns may
be different, representing different error-finding prob-
abilities.

• Individual attackers and individual defenders draw in-
dependently from their respective urn, meaning they
put the drawn ball back into the urn before the next
individual’s turn.

We use the same parameters and symbols as described in
Section 3.2 for the static model.

Time is modeled by attackers and defenders drawing from
the urn repeatedly. The drawing steps are synchronized and
can be imagined as days in the real world. In each step,
each individual attacker and defender is allowed one turn
at the urn and thus one chance to find the black ball. If
no one has found the ball, no one has found the error, so
the process continues with the next turn. We model the
probability to find the ball as constant across all turns. Even
if the software evolves in the meantime, we assume the error
density as constant. This is supported by literature [10, 36].

As soon as anyone draws the black ball, the error is dis-
covered, either by an attacker or by a defender. At this
instance, we stop and see, which group has found the error.
The defenders would now fix the error, the attackers would
exploit it. Thus, any further drawing is irrelevant, because
any further findings would be of no consequence. We there-
fore account the outcome as favorable for the group claiming
the first discovery.

But how do we break the tie of both groups finding the
error in the same step? Allowing this to be a neutral out-
come would violate the partition requirement pW + pL = 1.
Thus, we consider this outcome favorable for the attackers.
They have to develop an exploit, but this can be partially
automated [3]. They do not have to worry about quality
testing, they can afford to deploy a half-baked exploit that
is only effective on half the machines and they will still cause
harm. The defenders on the other hand have to make sure
their fix does not cause unwanted side-effects, they have to
manage patch distribution and they rely on the end users
to actually download and install the patch. We think the
attackers have the upper hand here, so we account the tie
as a win for the attackers.

4.3 Enumerating the Possible Outcomes
Due to the concept of time, this dynamic model has a more

complex set of outcomes compared to the static model. We
present the ideas behind our approach to enumerate them
here and give the resulting formulas. The mathematical de-
tails can be found in Appendix B.

Firstly, imagine only one attacker and one defender, re-
peatedly drawing from the urn in an unbounded number of
steps. The attacker’s probability to find the black ball with
one draw is p, the defender’s probability is q. Concentrating
on the attacker, the probability to find the black ball in the
second step is composed of not finding it in the first step
with probability (1− p) and then finding it in the second
step with probability p. The compound probability to find
the ball in the second step is thus (1− p) p. Extending this
to finding the ball in the m’th step means not finding it in the
first m−1 steps, hence the probability is (1− p)m−1 p. This
applies analogously to the defender. Because the attacker
and the defender operate independently, we can calculate
the probability of the attacker finding the ball in the m’th
step and the defender finding the ball in the n’th step as
follows:

pm,n = (1− p)m−1 p · (1− q)n−1 q



Figure 4: Matrix of Possible Outcomes

As illustrated in Figure 4, we can list all possible values
of pm,n in a matrix that is infinite in both row and column
direction (m = 1, 2, . . .; n = 1, 2, . . .). Obviously, the values
pm,n decrease with larger m or n, due to p, q < 1. The
matrix elements therefore become smaller to the right and
the bottom. Because the matrix lists all possible outcomes
of the repeated drawing and these outcomes are trivially
disjoint, the sum of all matrix elements

P
pm,n = 1. A

proof is given in Appendix B.
For any matrix element pm,n the respective outcome is fa-

vorable for the defenders, if they found the black ball before
the attackers. Thus, the number n of the step, in which the
defenders find the black ball must be smaller than the step
number m for the attackers: n < m. Because we account
the tie for the attackers, all other outcomes (n ≥ m), includ-
ing the diagonal are favorable for the attackers. In Figure 4,
this is represented by the coloring of the matrix elements.

The win probability pW of an outcome favorable for the
defenders can now be calculated by summing up all pm,n

with m > n:

pW =

∞X
n=1

∞X
m=n+1

pm,n =
q (1− p)

q (1− p) + p
(1)

Due to the construction of the matrix, pL = 1−pW , satis-
fying our model requirement of pL+pW = 1 (see Appendix B
for details).

One might argue now, that we modeled the process of
drawing from the urn to stop, once one group has found the
black ball. But here we are considering the other group to
continuously draw until it too found the black ball. This
appears to be a contradiction, but in fact, it is not. For
example, if the defender finds the black ball in step 5, we
would intuitively use the following description for the related
favorable outcome: “The defender finds the ball in step five
and the attacker not in steps one to five.” What we actually
sum up however is: “The defender finds the ball in step
five and the attacker in any later step.” It turns out that
both formulations are equivalent. With an infinite number
of draws, the attacker will eventually find the ball. Thus,
“not in steps one to five” and “any step later than five” are
the same.

Multiple Individuals
Generalizing from one attacker to multiple attackers is
pretty straightforward. Amongst a attackers, the proba-
bility for at least one attacker to find the black ball in one
draw is p̂ = 1− (1− p)a. Now we can just model a group of

multiple attackers as one more potent attacker. The same is
true for the defenders with q̂ = 1−(1− q)d. Replacing p and
q in Equation 1 with p̂ and q̂ allows us to express multiple
attackers and multiple defenders:

pW =
q̂ (1− p̂)

q̂ (1− p̂) + p̂

with p̂ = 1− (1− p)a , q̂ = 1− (1− q)d (2)

Multiple Errors
The extension to multiple errors is equally easy. If there
are e errors in the software, the defenders have to find every
single one of those before the attackers. Should the attackers
manage to find one error earlier, security is compromised.
Defenders find each individual error with probability pW

before the attackers. The probability to find all errors first
is:

ˆpW = pW
e (3)

Here, we again assume independent and uniformly dis-
tributed errors. But the previous results, including Equa-
tion 2 did not use assumptions on error distribution, because
only one arbitrary but fixed error was considered. For the
comparison of open and closed source, it is sufficient to limit
the discussion to one error. If either open or closed source
gets the upper hand for one error, multiple errors do not
change the consequences.

5. EXPLORING THE MODEL
We now leverage our mathematical apparatus to conduct

a comparison between open and closed source. We start
with an analysis of Equation 2 and interpret our findings.
We continue with an example software project, which we
calculate for both the open and closed source cases. This
section ends with possible extensions to our model that serve
as starting points for future work.

5.1 Function Analysis
To get an overview on the behavior of Equation 2, we

provide a graphical representation in Figure 5. The point
p̂ = q̂ = 0 is undefined, which is intuitively clear. If no
group will ever find an error, the probability of the defend-
ers finding an error first makes no sense. Because we assume
that every software has errors and that those can be found
with non-zero probability, this undefined point is no prob-
lem. Other prominent values also match our intuition:

• Along the p̂-axis, where q̂ = 0, the defenders never find
any errors, so the attackers always win. Consequently
pW = 0 for q̂ = 0.

• On the other hand, along the q̂-axis, where p̂ = 0, the
attackers never find errors. Thus, the defenders always
win (pW = 1).

• Crossing the graph at p̂ = 1, pW is always 0. How good
the defenders are does not matter. If the attackers find
all errors immediately, they always win.

• We broke the tie in favor of the attackers, so unsur-
prisingly for p̂ = q̂ = 0.5, pW is lower than 0.5, because
the model is not symmetric. (pW is 1

3
here.)
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Figure 5: 3D-Plot of Equation 2 from three different angles

Figure 6: Defender Performance Given a Fixed p

If we reformulate pW as a function in q̂ with p̂ as a pa-
rameter, we can discuss the chances of the defenders, given
a fixed performance of the attackers.

pW =
q̂ (1− p̂)

q̂ (1− p̂) + p̂

= 1− u

q̂ + u

= fp̂(q̂)

with u =
p̂

1− p̂

The function fp̂ is visualized in Figure 6. Two interesting
results can be seen in this graph. First, fp̂ exhibits degres-
sive growth: It climbs faster for small values of q̂. Given
that the defenders raise their q̂ value be recruiting more de-
velopers, this result underlines the argument of diminishing
returns we intuitively formulated at the beginning of the
paper in Section 2.3.

Second, and maybe even more interesting, the highest win
probability the defenders can achieve is lower than 1. Even
though fp̂ saturates at 1 (limq̂→∞ fp̂(q̂) = 1), the highest

achievable value at q̂ = 1 is:

pW,max = fp̂(1) = 1− p̂ (4)

Figure 5 illustrates this with the edge at q̂ = 1 starting at 1
for p̂ = 0 and ending at 0 for p̂ = 1. Interpreting this result
for the bug-hunting process yields:

The defenders cannot achieve arbitrary win prob-
abilities, but are ultimately limited by the per-
formance of the attackers.

No matter how many defenders work on the code, the at-
tackers determine the envelope. This result is disturbing,
because it means there will always be a window of opportu-
nity for the attackers and there is nothing we can do about
it. Within the limits and assumptions of our model, this is
mathematical proof of the fact that perfect security cannot
be reached outside of unrealistic corner cases (software with
no errors or a world with no bad guys).

If reaching pW,max is the best the defenders can hope for,
how far towards 1 do they have to push q̂? Looking at the
situation for q̂ = 1

2
we get:

fp̂(
1

2
) =

1
2

(1− p̂)
1
2

(1− p̂) + p̂
=

1

1 + p̂
· pW,max

Thus, if p̂ is small, fp̂( 1
2
) ≈ pW,max. The defenders reach

a good approximation for pW,max already with q̂ = 1
2
. We

discuss next, how large a group is needed in a concrete sce-
nario.

5.2 Example Software Project
We assume a fictitious software project with 1 million lines

of code, which is the order of magnitude of popular open-
source projects like Firefox. Existing studies report about
0.25 to 0.3 errors (including non-security bugs) in 1000 lines
[7, 10], out of which 1-12% are security errors [22]. We
therefore consider our project to have e = 106 × 0.3

1000
×

0.05 = 15 errors. This is also in line with the 0 to 0.033
vulnerabilities per 1000 lines reported by Schechter [29].

We found no conclusive studies on the number of attack-
ers. We believe a group size of a = 500 is realistic for the
given project size.



Table 1: Required Defenders for ˆpW = 0.6
p̂W = 0.6 q = 0.001% q = 0.002% q = 0.005%

α = 10 1455 1466 1500
α = 5 2931 2977 3126
α = 2 7501 7815 9023

α = 1 15630 17133 26245

Table 2: Required Defenders for ˆpW = 0.9
p̂W = 0.9 q = 0.001% q = 0.002% q = 0.005%

α = 10 7360 7654 8774
α = 5 15309 16706 24835
α = 2 43869 62088 impossible

α = 1 124176 impossible impossible

The magnitude of the defender’s single-step error finding
probability is based on the error density of 15 security errors
in 1MLOC as just established. Randomly picking a line
of code will give a 0.0015% chance of hitting a vulnerable
line. As discussed earlier, a lot of considerations influence
this probability. Trained developers with tool support may
perform better than random, so we use values of q = 0.001%
to q = 0.005%. To compare open and closed source, we
define α = q

p
to be the factor, by which the availability of

source code simplifies error finding. It therefore models the
advantage of the defenders, who always have source code.
We vary α between 10 and 1, the latter being the open
source case. Here is a summary of our model parameters so
far:

e = 15 number of errors
a = 500 number of attackers
q = 0.001% . . . 0.005% defender finding prob.
p = q

α
attacker finding prob.

α = 10 . . . 1 source code benefit

We now set a target win probability ˆpW and then use
equations 3 and 2 to calculate the minimum defender group
size that reaches this probability. First, we choose a ˆpW of
only 0.6. The chance for the defenders to find every error
before the attackers is thus 60%. Even for such a disconcert-
ingly low winning chance, the required number of defenders
given in Table 1 is pretty high, especially for the open source
(α = 1) cases. Interestingly, the influence of the defender’s
individual finding probability q is low.

For a more realistic example, we refer to [12], which re-
ports that for 15% of vulnerabilities found, an exploit is
available before disclosure. Even though there is a gap be-
tween discovery and disclosure of a vulnerability, these 15%
include the cases where the defenders lost. Thus, we use
ˆpW = 0.9 for our second example. With a nine out of ten

chance, the defenders should find every error before the at-
tackers. Table 2 shows the results. The required number
of defenders grows beyond realistic values, especially for the
open source scenario with a group size greater 100,000. For
three cases in Table 2, a win probability of 0.9 is impossible
to reach. This is a result of the upper bound determined by
Equation 4. With multiple errors, this bound exponentiates
to ˆpW,max = (1− p̂)e. With α = 1, q = 0.005% this upper
bound is ˆpW,max = 69%. No matter how much the defend-
ers struggle, in close to 1 out of 3 cases, the attackers will

win. The only possible mitigation is to limit the attackers,
from which we conclude that obscurity is the only effective
deterrent available here. Additionally, a group size of 20,000
defenders already achieves ˆpW = 55%, whereas 40,000 de-
fenders are needed for ˆpW = 65%. As seen in the previous
section, the pW grow fast at the beginning and compara-
tively small numbers come close to the bound already.

5.3 Potential Extensions
We designed our model to compare open source and closed

source according to the process of finding errors. Along the
way, we made a number of assumptions. Within the frame-
work we provided, a number of related questions could be in-
vestigated or assumptions resolved by extending the model.
We want to present some ideas here that might tip off future
work.

Mitigating Assumptions
We assumed errors to adhere to an independent uniform
distribution. This assumption of the static model is already
partially mitigated by the dynamic model, because it regards
each error in isolation and deduces, whether the attackers
or the defenders find it first. As soon as finding one error
simplifies finding a whole conglomerate of errors, the only
requirement is that for attackers and defenders, this follow-
up conglomerate is the same. If finding one error simplifies
finding more errors only for one group, but not for the other,
the model needs to be changed considerably to support that.
The dynamic model can then no longer deal with individual
errors in an isolated fashion.

We further assumed every individual attacker or defender
recognizes any discovered error as such. In reality, attackers
and defenders will have varying degrees of expertise and may
step over an error without noticing. As a first extension to
the model, errors can have individual finding-probabilities
assigned that are no longer the same across all errors. This
would be straightforward to incorporate into the existing
model. Another possible extension could use a matrix of
error-finding probabilities such that each attacker and each
defender exhibits a different probability for every error. It
would be tiresome to come up with values for this matrix,
but it would more precisely model developer expertise. Some
defenders may just not be able to find certain errors. Some
attackers may ignore difficult vulnerabilities and continue
searching for a lower-hanging fruit. For the model, this
would change the aggregation of the individual probabili-
ties into p̂ and q̂, but the calculation of pW (see Equation 2)
would still apply unaltered.

Changes to the Iterative Drawing
Remember that we broke the tie in favor of the attackers,
because they do not have to worry about quality control and
patch deployment but instead release their exploit immedi-
ately. The model can be extended to a larger head-start h
for the attackers. Instead of m > n, only m > n + h would
then be favorable for the defenders. The basic structure of
the matrix (see Figure 4) would be similar, but the triangle
of the defenders would shift down. Equation 2 would re-
quire adaptation. Conversely, the defenders could be mod-
eled with a head-start, representing the pre-release phase,
where the defenders fix vulnerabilities in software not yet
deployed.



Our model gives both attackers and defenders an infinite
number of drawing steps. We have developed the formula
for a cropped version, where the matrix is finite, because the
number of steps is bounded. We did not consider the results
interesting to justify inclusion in the paper.

We also briefly thought about making the steps asyn-
chronous for attackers and defenders, e.g. for each step of
the attackers, the defenders would advance two steps. We
think this can be better handled by folding the two steps
into one with an adequately higher success probability, so
we did not pursue this modification.

Error Count
Open source projects have more defenders than closed source
projects. If this increased number of code reviewers trans-
lates into a lower number of errors, and there is circumstan-
tial evidence supporting this [35], the outcome of our model
would shift towards open source. Equation 3 would need
to consider separate error counts for the open and closed
worlds. Further comparative studies would be necessary to
answer that. Errors could also be treated according to an
arrival process, with new errors being introduced to the code
with a given rate and our error finding model removing er-
rors from the system.

Peculiarities
There are some elements in the real world we dismissed in
our model, because we believe them to be insignificant for
our general analysis. If evidence should suggest otherwise,
their inclusion in the model should be easy.

We ignored evil insiders. In a closed source environment,
some attackers might actually work inside the vendor com-
pany and thus have access to the source code. Even more
interesting, an evil insider can deliberately implant vulner-
abilities. He later does not need to find them, because he
knows of their existence. The question is, when he chooses
to exploit them. For our model, this decision of the insider
can be treated as a degenerated finding probability, but it
may be orders of magnitude larger. The defenders have to
find this implanted vulnerability like any other, but it may
be particularly obfuscated. Interestingly, this situation can
also arise in an open source environment.

Converting the Attackers
Our model could be used to evaluate efforts to turn attackers
into defenders by providing a financial incentive. Projects
like Tipping Point’s Zero Day Initiative [40] pay money for
reports about discovered vulnerabilities. This changes the
economy of the vulnerability market and is capable of in-
creasing the number of defenders and may even decrease the
number of attackers by converting them. With our model,
such efforts may analyze questions like“How many attackers
do we need to convert to change the game?”

The Asymmetry of Libraries
One problem where we have not found a convincing solu-
tion within our model is the special situation of libraries.
The operating system kernel can be regarded as one library
common to all processes in this respect. When defenders
analyze source code to check for errors, they usually stop
their verification at function calls to outside libraries. They
assume the library will behave according to the documenta-
tion. Of course, the library itself is also a software project,

but the small team of developers working on this library
defends it almost alone. The attackers however may use
fuzzing techniques on the compiled binary. There, they will
automatically check for errors in libraries as well. Their at-
tacks do not stop at API boundaries but cover the entire
binary code involved. This means that widely-used libraries
are being pounded on by many more attackers compared to
the little team of defenders.

Liability Considerations
Software security is related to the broader topic of software
liability. Regarding the distinction between open and closed
source software, the following observations can be made:
Closed source software is often sold as a product. Even
though vendors try to limit their liability in license agree-
ments, some legal systems4 define a set of basic liabilities
that are unalienable. For some vendors of critical software,
this may pose an incentive to reduce the number of errors in
their products. The error discovery probabilities provided
by our model could be used in a risk analysis to determine
the amount of resources to invest in hardening the software.
Open source software is mostly provided free of charge, con-
stituting a gift in legal sense where liability is limited to
deliberate intention or gross negligence.

Software, both open and closed source, can also be part
of a service contract. A general problem with software se-
curity here is that these contracts typically cover the pro-
visioning of a service, but security includes the absence of
unwanted additional services. For open source software, the
conventional wisdom of more eyeballs leading to fewer errors
may cause contract partners to expect such software to have
fewer bugs. We have shown that such conclusions should
be handled with care. For a deeper analysis of such liability
and contractual questions, our model may be integrated into
larger economical or game theoretical models.

We consciously limited our view of the world to the finding
of errors. Of course the discovery of a vulnerability is rather
the beginning of a new line of problems. A patch must be
made available and must be deployed on end-user machines.
Even though timely patch distribution [6] and installation
[24] is considered a systems problem, with the availability of
the patch liability moves from the vendor to the end-user.
However, current patch distribution mechanisms are slow
compared to the ability of attackers to reverse-engineer the
patch into an exploit [3].

6. RELATED WORK
We focus our discussion of related papers to vulnerability

analysis using probabilistic or stochastic approaches. Re-
lated work in a broader context— from debugging tools to
patch deployment—has been mentioned throughout the pa-
per already.

In [29], Ozment and Schechter provide a detailed and elab-
orate analysis of the introduction and reporting of vulner-
abilities in the OpenBSD operating system. A period of
7.5 years with 15 versions is considered. Supporting the
numbers we used in our evaluation, the authors state that
vulnerability densities are orders of magnitude lower than
overall error densities, which include bugs that are not vul-

4Being German authors, we are more familiar with the Ger-
man legal system. Arguments given here should be under-
stood in this light.



nerabilities. Overall, the vulnerability densities range from
0 to 0.033 per thousand lines of code. Furthermore, Ozment
and Schechter found evidence that the number of vulnera-
bilities decreases with the lifetime of the project. However,
that decline is not very pronounced.

Rescorla [36] could not find evidence for a downward trend
in vulnerabilities over the lifetime of software. He conducts
a cost-benefit analysis of vulnerability disclosure for a large
base of software and with two different exponential models.
His data does not contradict the possibility of a constant
vulnerability rate, which is an assumption we use in our
model.

Several papers [1, 2] describe the emergence of errors with
software reliability growth models. Errors appear randomly,
with the rate modeled after the mean time between failure.
Anderson [2] uses an exponentially distributed error lifetime
and derives an approximated polynomial error distribution,
the so called thermodynamic model. In this model, attack-
ers and defenders appear as passive observers of the soft-
ware that randomly shows errors. Consequently, Anderson
concludes that making it easier or harder to find attacks
helps attackers and defenders equally. He goes on to discuss
other effects that break the symmetry, focusing primarily on
trusted computing.

Alhazmi and Malaiya employ the same error lifetime
paradigm in [1]. They analyze various models for the error
rate by fitting them to data from real systems. Interest-
ingly, Anderson’s thermodynamic model was the least suc-
cessful in matching the empirical data, which emphasizes
the difficulty to model such a complex process. We think
the approaches based on error lifetime are not well-suited
for comparing open and closed source systems. Describing
the emerging errors as a probabilistic process does not offer
a concise way to model the asymmetric situation of attack-
ers and defenders in open- and closed-source scenarios. Our
model thus employs the complementary view of associating
probabilities to the attackers and defenders, who actively
search for errors. This interpretation allows us to model the
bug-finding race between the two groups with their differing
conditions appropriately.

Vulnerability discovery and security implications in gen-
eral have been analyzed economically [37, 15]. Such models
can help ranking potential attacker targets, as the return
gained from exploiting a particular software depends on the
potential damage and the associated cost. But these discus-
sions are orthogonal to our results, because we compare open
and closed situations for the same software. Our findings can
help deciding whether a codebase should be kept secure or
opened to the public. We cannot say which of two different
projects— independent of open or closed source— is more
likely to be exploited.

7. CONCLUSION
The central result from our analysis of the dynamic model

is that obscurity is an effective deterrent and the larger num-
ber of defenders in the open source case does not generally
suffice to counteract this. The power of the attackers ul-
timately limits the power of the defenders, so they cannot
achieve arbitrary winning chances. The significance even of
a small limit is exponentiated by the fact that defenders have
to find each error before the attackers. These facts appear to
speak against open source, but in reality, one should never
rely on either obscurity or openness alone, but consider the

bigger picture [21]. Therefore, we want to take a closer look
at the open source environment and its numerous benefits
before we summarize the paper.

7.1 A Case for Open Source
First of all, this paper solely considers the discovery of a

vulnerability, not what follows after that. The entire discus-
sion about vulnerability disclosure policies and their bene-
fits and downsides is therefore out-of-scope for this work.
If a closed source vendor learns about a security issue and
chooses not to fix it immediately, but collect more errors
for a cumulative patch, this changes the game in favor of
open source. Publishing information about discovered vul-
nerabilities creates an incentive for the vendor to fix bugs
early [38]. Hiding such information is dangerous, because
the vulnerability has already been found and the defenders
are needlessly testing their luck.

Other benefits of open source stem from the distribution
of knowledge it entails. It encourages curious users who
want to learn more about the foundations of their system.
If they want to experiment, they have the freedom to change
things as they please. For that reason, open source software
often serves as valuable research vehicles. In trust-critical
environments, open source enables stakeholders to perform
their own security audits without the need to trust outside
third parties. This is especially interesting for countries that
distrust binary software from potential enemies.

One fundamental assumption in our paper is that the
same project exists in an open and a closed source version
and we compare the two. In reality, this does not exist.
The open source development methodology does not share
the deadline-pressure pushing commercial vendors to release
software that is not fully tested and reviewed. And because
the pre-release and post-release error density can differ by an
order of magnitude [10], a testing phase dictated by technical
instead of market considerations is certainly helpful. Stud-
ies have shown that closed source vendors’ patching efforts
slow down before major product releases [13].

7.2 Summary
In this paper, we contribute to answering the question: “Is

open source more secure?” We limit this very broad ques-
tion to the process of discovering vulnerabilities in software
and whether the attackers or the defenders find errors first.
The contribution of our work is a mathematical model of
this asymmetric race. We think the model may also be ap-
plicable in the broader context of published vs. secret proofs
or cryptographic algorithms, but we have not thought this
through yet.

Surprisingly, the colloquial argument that open source is
superior given a large number of bug-hunters is not justified
by our model. First, even with an arbitrarily large number of
defenders, the attackers cannot be dominated unboundedly.
The power of the defenders has an upper bound ultimately
dictated by the attackers. Second, with realistic numbers
we show that the defenders do not require excessively large
groups to approach this bound.

We conclude that open source is not intrinsically more
secure. Obscurity can be an effective deterrent for attackers.
However, open source has profound advantages beyond mere
vulnerability chances, ranging from research to information
freedom. Thus, the authors do not consider this paper an



argument to abandon the open source idea, but rather as a
contribution to understand its limits.
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APPENDIX
A. DETAILED SOLUTION FOR THE

STATIC MODEL
We seek the probability P (n, k, p) of n individuals find-

ing k different errors. Each individual finds one error with
probability p, satisfying n ≥ k and kp ≤ 1. Hence, with the
remaining probability 1− kp the individual finds no error.

1. The number of cases of n individuals finding k errors
F1 . . . Fk in this order is equal to the number of cases
to assign n different balls in k different urns, with no
urn staying empty. This number is given exactly by the
Stirling numbers of the second kind Sn,k [8]:

Sn,k =
1

k!

kX
j=0

(−1)k−j

 
k

j

!
jn, n ≥ k ≥ 0

Errors can be found in any order. Thus, this number in-
creases to k! ·Sn,k. Assuming that each individual finds
an error (with probability p), the associated probability
is:

k! · Sn,k · pn

2. Now, 1, 2, . . . , n − k individuals may not find an error
(with more than n− k individuals not finding an error,
not all k errors can be found). There are

`
n
i

´
possi-

bilities for i out of n individuals to find no error (with
probability 1−kp). In analogy to 1, there are k! ·Sn−i,k

cases for the remaining individuals to find all k errors.
Hence, the respective probability equals to: 

n

i

!
· k! · Sn−i,k · pn−i (1− kp)i

3. Finally:

P (n, k, p) = k! ·
n−kX
i=0

 
n

i

!
pn−i (1− kp)i · Sn−i,k

B. DETAILED SOLUTION FOR THE DY-
NAMIC MODEL

The matrix of possible outcomes is calculated as follows:

pm,n = (1− p)m−1 · (1− q)n−1 · pq
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The matrix thus has the following structure:2666664
pq pq̄q pq̄2q pq̄3q · · ·
p̄pq p̄pq̄q p̄pq̄2q p̄pq̄3q · · ·
p̄2pq p̄2pq̄q p̄2pq̄2q p̄2pq̄3q · · ·
p̄3pq p̄3pq̄q p̄3pq̄2q p̄3pq̄3q · · ·

...
...

...
...

. . .

3777775
with p̄ = 1− p, q̄ = 1− q

1. Now we sum up the outcomes favorable for the defend-
ers column-wise:

pW =

∞X
n=1

∞X
m=n+1

pm,n

= pq ·
h
p̄
`
1 + p̄ + p̄2 + . . .

´
+

p̄2q̄
`
1 + p̄ + p̄2 + . . .

´
+

p̄3q̄2 `1 + p̄ + p̄2 + . . .
´| {z }

1
1−p̄

= 1
p

+ . . .
i

= pq · p̄ · 1

p
·
h
1 + p̄q̄ + p̄2q̄2 + . . .

i
= qp̄ · 1

1− p̄q̄

=
q (1− p)

1− (1− p− q + pq)

=
q (1− p)

1 + p + q − pq

=
q (1− p)

q (1− p) + p

2. Further, we show that the sum of all pm,n is 1:X
m,n

pm,n =

∞X
m=1

∞X
n=1

pq (1− p)m−1 (1− q)n−1

= pq ·
∞X

m=1

"
(1− p)m−1 ·

∞X
n=1

(1− q)n−1

#

= pq ·
∞X

m=1

(1− p)m−1 ·
∞X

n=1

(1− q)n−1

= pq ·
∞X

m=0

(1− p)m ·
∞X

n=0

(1− q)n

= pq · 1

1− (1− p)
· 1

1− (1− q)

= pq · 1

p
· 1

q

= 1

Hence, due to the structure of the matrix, pL = 1−pW .
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