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Abstract. Cryptographic puzzles (or client puzzles) are moderately difficult problems that can be solved by
investing non-trivial amounts of computation and/or storage. Devising models for cryptographic puzzles has
only recently started to receive attention from the cryptographic community as a first step toward rigorous
models and proofs of security of applications that employ them (e.g. Denial-of-Service (DoS) resistance).
Unfortunately, the subtle interaction between the complex scenarios for which cryptographic puzzles are
intended and typical difficulties associated with defining concrete security easily leads to flaws in definitions
and proofs. Indeed, as a first contribution we exhibit shortcomings of the state-of-the-art definition of security
of cryptographic puzzles and point out some flaws in existing security proofs. The main contribution of this
paper are new security definitions for puzzle difficulty. We distinguish and formalize two distinct flavors of
puzzle security which we call optimality and fairness and in addition, properly define the relation between
solving one puzzle vs. solving multiple ones. We demonstrate the applicability of our notions by analyzing
the security of two popular puzzle constructions.
We briefly investigate existing definitions for the related notion of security against DoS attacks. We demon-
strate that the only rigorous security notion proposed to date is not sufficiently demanding (as it allows to
prove secure protocols that are clearly not DoS resistant) and suggest an alternative definition. Our results
are not only of theoretical interest: the better characterization of hardness for puzzles and DoS resilience
allows establishing formal bounds on the effectiveness of client puzzles which confirm previous empirical ob-
servations. We also underline clear practical limitations for the effectiveness of puzzles against DoS attacks
by providing simple rules of thumb that can be easily used to discard puzzles as a valid countermeasure for
certain scenarios.

1 Introduction

Background. Cryptographic puzzles are moderately difficult problems that can be solved by investing
non-trivial amounts of computation and/or memory. A typical use for puzzles is to balance partic-
ipants costs during the execution of some protocols. For example, many papers addressed their use
against resource depletion in SSL/TLS [10], TCP/IP [20], general authentication protocols [3, 15], spam
combat [12], [11], [17]. The use of puzzles reaches beyond balancing resources: they can be used as
proof-of-work in other applications (like timestamping) or through a clever application in encryption
into the future [27]. Puzzles are accounted under various names: cryptographic puzzles, client puzzles,
computational puzzles or proofs of work, we prefer the first one since the puzzles that we study are
intrinsically based on cryptographic functions.

Most of the puzzle-related literature concentrates on providing constructions, often with additional,
innovative properties. For example puzzles that are non-parallelizable prevent an adversary from using
distributed computations to solve them. Examples of constructions include the well known time-lock
puzzle [27], the constructions proposed by Tritilanunt et al. in [31] and later by Jeckmans [18], Ghassan
and Čapkun [21], Tang and Jeckmans [30]. All of these constructions can ensure that a puzzle-solver



spends computation cycles before a server engages in any expensive computation. To alleviate compu-
tational disparities between solvers, Abadi et al. [1] build puzzles that rely on memory usage rather
than on CPU speed, this leading to a more uniform behaviour between devices. For completeness, in
Appendix A we make a brief survey over puzzle properties from related work.

Given the wide-range of applications for puzzles and the number of proposed constructions it is
probably surprising that devising formal security notions for puzzles has received rather little attention
so far, with only two notable exceptions. Chen et al. [9] initiate the formal study of security properties
for puzzles. They identify two such properties. Puzzle difficulty requires that no adversary can solve a
single puzzle faster than some prescribed bound, whereas puzzle unforgeability requires that no adversary
can produce a valid-looking puzzle. While this latter property is not required by all scenario usages for
puzzles, the former one is critical. In a recent paper, Stebila et al. [28] notice that single-puzzle difficulty
may not suffice to guarantee security when puzzles are used in real applications, since here it may
be needed that an adversary does not solve multiple puzzles faster than some desired bound, and the
relation between single-puzzle difficulty and multi-puzzle difficulty is unclear at best, and completely
inexistent at worst.

To fix this, Stebila et al. [28] propose a notion of puzzle difficulty that accounts for multiple puzzles
being solved at once and prove that two existing constructions HashInversion (initially used by Juels
and Brainard [20]) and HashTrail (initially used in the Hashcash system [4]) meet this notion. The main
motivation for the work in this paper is that the proposed security definition is problematic: the notion
defined is incomplete since it does not account for the tightness of the bounds and, strictly speaking, it
cannot be met by any existing scheme. This does not contradict the security proofs mentioned above as
the claims rely on faulty analysis: the difficulty bound provided for the HashInversion puzzle is wrong
while for HashTrail is largely overestimated.

Our results. The main contribution of our paper are new security notions for puzzle difficulty. We
distinguish between several different flavors of puzzle difficulty. The first property demands that no
adversary can solve the puzzle faster than by using the “prescribed” algorithm (i.e. the puzzle-solving
algorithm that is associated to the puzzle). We call such puzzles optimal. The formulations of this notion
is in the multi-puzzle setting which, as correctly observed in [28], is the case relevant for most practical
applications. While it is not true in general that for a puzzle construction solving n puzzles takes n times
the resources needed for solving one puzzle, this is clearly a desirable property. We capture this intuition
through a property that we call difficulty preserving, an attribute which is directly linked to optimality
showing the later to be the desired property for a puzzle. Having fixed the definitions we move to the
analysis of two popular puzzle systems HashTrail and HashInversion. We prove that, in the random
oracle model, these puzzles are optimal and difficulty preserving for concrete difficulty bounds that we
derive. Finally, we look at existing work on using puzzles for provable DoS resistance. Unfortunately, we
discovered that the formal definition for DoS resilience proposed by [28] is not strong enough as it allows
for clear attacks against protocols that are provably secure according to the definition. We then design
and justify a new security definition that does not suffer from the problems that we have identified.

The work in this paper extends and refines our previous results [16]. The main contribution are
several new security definitions that are stronger, more convenient, and of higher practical relevance.
The newly introduced notions stem from the contrast between the sequential and concurrent solving
games that allow us to formally define difficulty relations between puzzles. These also set way for a more
rigorous treatment of difficulty preserving puzzles which does not require optimality and relies strictly
on properties of the adversary rather than on properties of the solving algorithm. A new relevant puzzle
property is also added: fairness. This addresses both the probability for an adversary to falsely claim
that he solved the puzzle, i.e., fairness in answering, as well as the average vs. the maximum solving
time, i.e., fairness in solving. We also take further our analysis on DoS-resistance with client puzzles.
While in [16] our scrutiny was limited to the simplest proof-of-work approach, here we depict practical
limitations for two more advanced proof-of-work schemes that use filters to separate between clients and
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adversaries. Finally, our work here includes more proofs and details that were absent in our previous
work due to space limitations.

Before we move on, we note that getting the security definitions for puzzles and DoS security right
is quite important as more and more works in this direction have appeared (a book chapter in [8] and
also [25] and [29]) and all seem to have inherited the weaknesses in the definition of [28].

2 Shortcomings of existing definitions and proofs

The first attempt to formalize puzzle properties, and in particular puzzle difficulty, was by Chen et al.
in [9]. Recently, Stebila et al. [28], motivated by the observation that the security notion of [9] does
not guarantee that solving n puzzles is n times harder than solving one, introduced a new definition of
puzzle difficulty. In brief, a puzzle is deemed εk,d,n(·)-strongly difficult if the success probability of an
adversary is less or equal to εk,d,n(·) and εk,d,n(t) ≤ εk,d,1(t/n) (this later condition enforcing stronger
difficulty w.r.t. n puzzles). Here k is a security parameter, d is the difficulty level and n denotes the
number of solved puzzles.

2.1 Shortcomings of existing definitions

There are several weak points in the difficulty definition outlined above. One shortcoming is that the
property of a puzzle of being strongly difficult [28] is in fact a property of the function ε that upper-
bounds the success of the adversary. However, ε is an upper bound on the hardness of the puzzle, but not
necessarily the tightest possible (for example if one sets εk,d,n = 1 any puzzle is εk,d,n-strongly difficult).
A natural question is then what if one can find a bound that deems the puzzle strongly difficult, while
for some other tighter bounds this property does not hold anymore. Should we consider such a puzzle
strongly difficult or not? Note that in contrast, Chen et al. in [9] clearly state that any puzzle that is
ε difficult is ε + µ difficult and the most accurate difficulty bound is the infimum of ε. The point is
not that one would find such a bound on purpose, but rather as security reductions are not trivial one
could find a good bound with respect to which the puzzle is strongly difficult, just to turn out that
the puzzle is not strongly difficult for a tighter bound. There is an important qualitative distinction
between puzzles and the majority of cryptographic primitives when it comes down to the tightness of the
security bounds. For most cryptographic constructions the tightness of bound matters, since it impacts
the parameters and hence the efficiency of schemes. Even with loose bounds, secure instantiations are
possible at the expense of efficiency. For cryptographic puzzles, tight bounds are more important since
a loose bound does not necessarily means that the time to solve the puzzle increases proportional over
multiple instances even in the case when the bound does so.

The following example of a time-lock puzzle shows that the tightness of the bound matters. We
skip the formalism as we want to keep this example as intuitive as possible. Set m to be an RSA-
like modulus (sufficiently large to rule out any insecurity) and assume that solving one puzzle means

given x ∈R [0..2k−1] to compute x2dmodm. We assume the usual hypothesis that this computation
cannot be done faster than d squarings unless one knows the factorization of the modulus. Suppose the
adversary can get 1 or 2 fresh values x and has to compute x2dmodm for each of them with no prior
knowledge of the modulus. We can say that the success probability of the adversary is upper bounded
by εk,d,n(t) = t

n·d , ∀n ∈ {1, 2}. To check for correctness, indeed, if n = 1 the probability to find the
output for less than d steps (one step means one squaring) is almost 0 assuming a sufficiently large
modulus and 1 at d steps. While for n = 2, for less than d steps the probability is 0, at d steps the
adversary has solved the first puzzle, while the probability that the second is also solved is 2−k due
to the possibility of colliding x1, x2, and 2−k is lower than 1/2 claimed by the upper bound. Thus the
bound holds and one can also verify that εk,d,1(t/2) = εk,d,2(t) so the puzzle is εk,d,n(t)-strongly difficult.
We set some artificially small parameters just to easily exhibit some calculation. Let k = 16 and d = 216
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(the bound holds for these values as well). One would expect that solving the two puzzles requires
2× 216 = 131072 steps. However, due to the possibility of colliding inputs the average number of steps
is actually 216 − 1 = 131071, that is, one step is missing. The numbers given here are artificially small
and the variation is not very relevant, but it has the sole purpose to show that the criterion has some
deficiencies. The problem here is that the bound is not tight enough. More precise bounds that should
have been used are: εk,d,1 = 0 if t ∈ [0, d), εk,d,1 = 1 if t = d and εk,d,2 = 0 if t ∈ [0, d), εk,d,2 = 2−k if
t ∈ [d, 2d) and εk,d,2 = 1 if t = d. For these bounds indeed εk,d,1(t/2) ≤ εk,d,2(t) which shows that in
fact the puzzle is not strongly difficult. These bounds are also informal and we used them just as an
intuition, indeed for any t < d the adversary can still guess the solution with negligible (but non-zero)
probability. We can prove, and we specify this in a remark that follows, that if the bound is tight then
the condition from [28] is sufficient to make a puzzle difficulty preserving.

But, one may further ask if this condition is really necessary. The answer is negative. In fact, quite
surprisingly, the HashTrail puzzle does not satisfy it and neither does the HashInversion puzzle (while
both of them can be proved to be difficulty preserving). We call HashInversion the generic puzzle which
consists in the partial inversion of a hash function, that is given x′′, H(x′||x′′) find x′. Also, we refer
HashTrail as the generic puzzle which consists in finding an input to H(r||·) such that the result has
a fixed number of trailing zeros. Both these constructions are frequently used in many proposals. The
first one is used by Jules and Brainard in [20] and the second by Back in the Hashcash system [4]. We
prefer the generic names HashInversion and HashTrail as these suggest better what means to solve the
puzzle as well as we are not interested in the specific details for the construction of the puzzles used
in [4], [20].

Figure 1 shows the advantages for both these puzzles at d = 8 for n = 1 and n = 3. For n = 1 we
divide the number of steps with 3 as indicated in the criterion from [28]. Note that the intersection of
the bounds is obvious, thus εk,d,n(t) ≤ εk,d,1(t/n) is not satisfied. The bounds in [28] satisfy the criterion,
but we show these bounds to be wrong.

Moreover, and this is another weakness for the definition of [28], the criterion εk,d,n(t) ≤ εk,d,1(t/n),
can never hold in general. The reason is that in the game that defines security of multiple puzzle it is
possible with some (negligible) probability that the challenge puzzles contain two identical puzzles. In
this case solving n puzzles should always require less effort than n times the effort required to solve
a single puzzle, at least up to negligible factors. The definition should therefore allow for this kind of
slack, i.e. it should require that |εk,d,n(t) − εk,d,1(t/n)| ≤ k−ω(1). The time-lock puzzle seems to satisfy
such a criterion, but note that this is certainly not the case for the hash-based puzzles above which are
the most commonly employed solution in practice.
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Fig. 1: Adversary advantage at n = 1, d = 8, i.e., εk,8,1(t/3), (continuous line) and n = 3, d = 8, i.e.,
εk,8,3(t), (dotted line) for HashTrail (i) and HashInversion (ii) puzzles
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2.2 Shortcomings of existing proofs

In light of the above comments, it is natural to ask how tight is the bound obtained in [28]. By inspecting
the security proofs it turns out that besides the conceptual shortcoming in judging the hardness of n
puzzle instances, the bound used for the HashTrail puzzle is extremely loose while the bound for the
HashInversion puzzle is wrong (these puzzles are difficulty preserving as we show later in the paper, but
unfortunately the proofs provided in [28] are wrong). Figure 2 depicts the loose bound in (i) and the
wrong bound in (ii) for the case of n = 3 puzzles of difficulty d = 8 bits. Note that in (ii) the adversary
advantage is well underestimated.

We give a short numerical example to illustrate this. The difficulty bound claimed in [28] for the
HashInversion puzzle is εk,d,n = ( q+n

n·2d )n and the puzzle is deemed strongly difficult with respect to
this bound. Just to show that this bound is wrong consider the trivial case of n = 2, d = 3, i.e.,
the case of solving 2 puzzles each having 3 bits. Consider an adversary running at most 11 steps.
According to the aforementioned bound, one would expect that the advantage of the adversary is less
than (11+2

2·23 )2 = (13
16)2 ≈ 0.66. Consider the naive (yet the best) algorithm that successively walks trough

the set {0, 1, 2, ..., 7} in order to solve each puzzle. The success probability of this algorithm is actually
bigger than 0.66 as one can easily show. The naive algorithm can solve two puzzles in 11 steps if,
given x′1 and x′2 the two solutions, it holds that x′1 + x′2 ≤ 9. That is, there exists 1 solutions for 2
steps (the pair {(0, 0)} ), 2 solutions for 3 steps (the pairs {(0, 1), (1, 0)}) and so on, k − 1 solutions
for k steps up to k = 9 steps. From there on, one can note that for 10 steps given the set of pairs
{(0, 8), (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1), (8, 0)} one must discard the first and the last pair
(since 8 is not a valid value for the 3 bit guess) while for 11 steps one must discard the first 2 and the
last 2 pairs. Summing up, the naive algorithm succeeded in 1 + 2 + 3 + ... + 8 + 7 + 6 = 36 + 13 = 49
out of the obvious 23 × 23 variants which gives a success probability of 49

64 ≈ 0.76.

Thus the naive algorithm does better than the success probability of the adversary considered in [28]
and the discrepancy is due to the flawed security proof. The difference is not big in this example, but
obviously it gets significant when one increases the values of n and d.
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Fig. 2: Adversary advantage at n = 3, d = 8 for HashTrail (i) and HashInversion (ii) puzzles according
to Stebila et al. (dotted line) and in this paper (continuous line)

2.3 Single puzzle difficulty does not imply multiple puzzle difficulty

Solving multiple puzzles is a form of parallel repetition which is well known not to always lower the
error [5]. The following examples show that this is indeed the case for puzzles.

To begin with, we briefly enumerate the examples given in [28]. We skip the details and underline
just the arguments of the authors in the three examples. First, the generic construction from [9] is shown
not be strongly difficult since finding the master key of the server (of k bits) allows building for free any
number of puzzles and solutions (since the master key is known), which is easier than solving a puzzle
of difficulty k bits. Second, a time-lock puzzle built on 512 bit RSA modulus is shown not to be strongly
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difficult since for a puzzle difficulty of 220 and 230 puzzles, it may be easier to factor the modulus instead
of solving the puzzles. Third, for a puzzle based on signature forgery it is again argued that factoring can
be easier than solving a large number of puzzles. However, these examples basically show that whenever
n instances of difficulty d exceed the security level k of the underlying primitive it is easier to solve the
corresponding hard problem, e.g., breaking MAC codes, factoring, etc. One interpretation is that they
are based on a poorly chosen security level k rather than on the fact that difficulty is not preserved. In
practice, one would generally expect that, given k as security parameter, the underlying hard problem
is at least sub-exponentially hard to solve, e.g., 2f(k) steps, while the number of instances n is bounded
by some polynomial, e.g., p(k) clients, and the difficulty d still within reach to be eventually solved
by clients, e.g., 2d steps for some reasonably small d. Bottom line, for all of the previous examples a
correctly chosen k would have void the examples of any practical significance, e.g., fix an 4096 bits RSA
modulus (rather than 512) and there is no practically relevant n and d for which the construction would
not preserve hardness (in the previously mentioned circumstances). Generally, if one forces sufficiently
many instances n for any difficulty level d and security parameter k there is no puzzle construction to
satisfy hardness amplification. These examples would have been more relevant if, for rigorous treatment,
the security parameter k would have been included in the bound. But in [28] for HashTrail the bound
is set to εk,d,n = ( q+n

n·2d ) while for HashInversion it is set to εk,d,n = ( q+n
n·2d )n - obviously k is missing from

any of these bounds. Note that the weaker difficulty bounds from [9] do include the security parameter.
It is worth mentioning that in [28] there is also a fourth example for showing that solving more puzzles
can be easier. MicroMint is given as example, here it is commonly known that finding more collisions is
easier than finding one collision (due to the birthday paradox). This example however, as the authors
from [28] also note, shows that finding more solutions for a puzzle is easier than finding one. Thus it
has less to do with solving more than one puzzle.

Are there more natural examples which show that single puzzle difficulty does not imply multi-
ple puzzle difficulty without jeopardizing the difficulty bound? Yes. Not directly on the client puzzles
discussed here, but there is a whole line of research on whether parallel composition amplifies or not
difficulty. Roughly, one can view solving multiple puzzles (the concurrent solving game as we call it
further) as parallel composition. We give an example inspired by the work in [5]. This is an artificial
example, but it is useful to understand why parallel solving may be easier even without trying to solve
the puzzle at all. Consider f some publicly known function that is easily computable by the server side
but otherwise difficult for the client (it is easy to come up with such a function, consider for example
integer factorization as the trapdoor, and exponentiation for some large exponent 2d as the function,
i.e., the time-lock puzzle). Say puzzle solving means that the server hides bit b by computing f(r, b) and
the client has to find b given r, f(r, b) then to reply with a valid solution r′, f(r′, b′) such that b′ 6= b. As
f is public, just one computation of f is enough to solve this. Obviously solving one puzzle without any
computation of f has probability 1/2. But surprisingly, solving two puzzles without computing f has
the same probability and not 1/4 as one expects. That is, if the client receives two puzzles r1, f(r1, b1),
r2, f(r2, b2) he can simply reply by switching the puzzles with r2, f(r2, b2), r1, f(r1, b1) which is a correct
solution with probability 1/2.

3 Difficulty notions

To formalize puzzle difficulty and related notions we proceed as follows. First we define the usual
concurrent game of solving multiple puzzles and bound the adversary advantage. Second we define
a sequential solving game and then based on relations between difficulty bounds we define difficulty
preserving puzzles. We further define puzzle optimality which means that, up to some negligible factor,
there is no adversary that can solve one or more puzzles with better advantage than the solving algorithm
that comes with the puzzle. This property was generally ignored, we consider it to be the most relevant,
since if an adversary can solve puzzles in less steps than the puzzle solving algorithm, then such a
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construction may have no use at all. Further, in a forthcoming proposition we establish that if the
puzzle is optimal (assuming the usual way of solving more puzzles by running the solving algorithm on
each of the puzzles) the puzzle is difficulty preserving and solving n puzzles is n times as hard as solving
one. For completeness, we also define fairness with respect to both the probability to guess a solution
as well as to solving time.

3.1 Syntax for cryptographic puzzles

Our definition of a puzzle system follows in spirit the definition from [9], with several differences. One
is that we do not consider arbitrary strings as inputs together with keys to the puzzle generation, but
instead we group these in what we call the attribute space. This ensures a more general setting, since
strings and long term secrets are part of puzzles that assure additional properties, such as unforgeability,
etc. Thus in the simpler case where one does not want to ensure any additional property, the attributes
can be set to null. We use the symbol ⊥ to indicate the null attribute. The attributes can also be used
to simulate secret keys, if these are used in the construction of the protocol.

Definition 1 (Cryptographic puzzle). Let dSpace denote the space of difficulty levels, pSpace the
puzzle space, sSpace the solution space and aSpace the attribute space. A cryptographic puzzle, or alter-
natively client puzzle, CPuz is a quadruple of publicly known algorithms {Setup,Gen,Find,Ver} including
fixed spaces {pSpace, sSpace, aSpace} with the following descriptions:

• Setup(1k) is the setup algorithm that takes as input a security parameter 1k and fixes puzzle attributes
atr ∈ aSpace;

• Gen(d , atr) is the puzzle generation algorithm, it takes as input the difficulty of the puzzle to be created
d ∈ dSpace and a list of attributes atr ∈ aSpace then outputs a puzzle instance puz ∈ pSpace,

• Find(puz, t) is the solving algorithm that takes as input a puzzle puz ∈ pSpace and the maximum
number of steps t that is allowed to perform, then outputs a solution sol ∈ sSpace ∪ {⊥} (where ⊥ is
for the case when a solution could not be found in t steps),

• Ver(puz, sol′) is the verification algorithm that takes as input a potential solution sol′ ∈ sSpace and
a puzzle puz ∈ pSpace and outputs 1 if and only if sol′ is a correct solution for puzzle puz and 0
otherwise.

For soundness, we require that puz is the input necessary and sufficient to successfully run the Find
algorithm and that for any sol that is output of Find the verification holds, i.e., ∀puz←Gen(d , atr),∃t
such that 1←Ver(puz,Find(puz, t)).

By this, we force that one cannot produce a puzzle construction that is impossible to solve either
because the information is not sufficient or the puzzle has no solution.

Remark 1. To simplify our definition we assumed that all spaces are fixed since this covers all puzzle
constructions that we study here. If required by a more sophisticated construction, then it is possible
to let Setup output the description of these spaces along with the description of the algorithms.

Remark 2. In [28] Ver also takes as input the secret master key s that can be used as trapdoor in case
of puzzles that are not publicly verifiable (indeed, in some cases this trapdoor is needed for efficient
verification, e.g., the time-lock puzzle). Our definition does not account for this possibility since we deal
with puzzles that do not have such trapdoors. Extending the definition is straight forward by adding
the master secret to the input of the verification algorithm Ver and embedding it in the attributes string
atr that is output by the setup algorithm Setup (the difficulty notions that we study are not affected by
these changes).

Remark 3. The puzzle is generic and can be further augmented with other algorithms to ensure
additional properties. For example one can add the Auth algorithm to verify authenticity for the case
of unforgeable puzzles as in [9], etc.
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Remark 4. On purpose, we did not specify any detail on the runtime of Gen, Find and Ver algorithms.
This is because we wanted to keep the definition as generic as possible as it addresses puzzle in general.
For practical purposes, one can request that all four algorithms work in probabilistic polynomial time.

We now exemplify the definition above on the HashTrail and HashInversion puzzles.

HashTrail puzzle. Let H : {0, 1}∗ → {0, 1}k be a publicly known hash function and fix dSpace =
[1, k], pSpace = {0, 1}∗×{0, 1}k and sSpace = {0, 1}∗. The HashTrail puzzle is a quadruple of algorithms:

• Setup(1k) is the setup algorithm that on input 1k outputs atr =⊥,

• Gen(d) is the generation algorithm which on input d randomly chooses r ∈ {0, 1}k and outputs
puzzle instance puz = {d , r},

• Find(puz, t) is the solving algorithm that on input puz and the number of steps t iteratively samples
sol ∈ [0, t) until H(r||sol)1..d = 0,

• Ver(puz, sol) is the algorithm that takes puz, sol as input and returns 1 if H(r||sol)1..d = 0 and 0
otherwise.

HashInversion puzzle. Let H : {0, 1}∗ → {0, 1}k be a publicly known hash function and fix dSpace =
[1, k], pSpace = {0, 1}∗×{0, 1}k and sSpace = {0, 1}∗. The HashInv puzzle is the quadruple of algorithms:

• Setup(1k) is the setup algorithm that on input 1k outputs atr =⊥,

• Gen(d) is the puzzle generation algorithm which on input d randomly chooses x ∈ {0, 1}k, computes
H(x), sets x′ as the first d bits of x and x′′ as the remaining bits and outputs puzzle instance
puz = {d , x′′,H(x)},

• Find(puz) is the solving algorithm that on input puz and the number of steps t iteratively samples
at most t values sol ∈ {0, 1}d until H(sol||x′′) = H(x),

• Ver(puz, sol) be the algorithm that takes puz, sol as input and returns 1 if H(sol||x′′) = H(x) and 0
otherwise.

Remark 5. We set atr =⊥ since, while we do study difficulty notions for these puzzles, we are not
interested in their unforgeability and thus including a secret key in the puzzle construction will lead
only to unnecessary complications.

3.2 Difficulty preservation, optimality and fairness

We formalize puzzle difficulty using a game in which the adversary A is allowed to get as many puzzles
and their solutions from the challenger C and later needs to find solutions for one or more puzzles
generated by the challenger.

The following games make use of the following two oracles: OGenSolve and OTest, the former is used
to generate puzzles and solutions (by running Gen and subsequently if needed Find for the required
number of steps) while the later is used to output target puzzles (by running Gen). We do not stress
whether the adversary A runs OGenSolve on its own or these are simulated by the challenger C as we do
not distinguish here between interactive and non-interactive puzzles (puzzles that are generated by the
solver or the challenger). We defer such specific details for the security proof of each particular puzzle
that we analyze.

concurrent solving game (CS). For any fixed parameters k, d, n we define the concurrent puzzle

solving game Exec
CS/CPuz
A,k,d ,n (qGen, t) as the following four stage game between challenger C and adversary

A:

1. challenger C runs Setup on input 1k to get atr ∈ aSpace,
2. adversary A is allowed to make qGen queries to oracle OGenSolve which returns each time a puzzle

and its corresponding solution, i.e., {puz, sol}, and n queries to oracle OTest which on each invocation
generates and returns a target puzzle puz♦,
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3. after t steps adversaryA outputs a set of solutions {sol♦1 , sol
♦
2 , ..., sol

♦
n } for puzzles {puz♦1 , puz

♦
2 , ..., puz

♦
n }

that were returned by oracle OTest,
4. challenger C queries Ver on all puzzles and solutions output from adversary A and returns 1 if all

solutions are correct else returns 0.

Remark 6. The exact definition for each computational step done by the adversary in stage 3 of the
game strictly relies on the computational model behind the puzzle (for example one step can be the
computation of one hash function or one modular squaring, etc.). Therefore, the precise definition of
each computational step from stage 3 of the game is deferred for the proof related to each of the puzzles
that we analyze.

Remark 7. By using the factor qGen, in addition to previous hardness definitions, we allow collisions
in the generation algorithm, that is, we do not exclude that the same puzzle can be outputted more
than once. Generally, collisions appear as a negligible factor in the hardness bound, but this factor is
relevant as the examples from the introductory section showed.

Sequential solving game (SS). For any fixed parameters k, d, n we define the sequential solving game

Exec
SS/CPuz
A,k,d ,n (qGen, t) as the following four stage game between challenger C and adversary A comprised

of n isolated adversaries Ai, i = 1..n each performing ti steps and qGen,i queries:

1. similarly to step 1 of the concurrent solving game challenger C runs Setup on input 1k to get
atr ∈ aSpace,

2. for i = 1..n
(a) adversary Ai is allowed to make qGen,i queries to oracle OGenSolve which returns each time a

puzzle and its corresponding solution, i.e., {puz, sol}, and 1 query to oracle OTest which generates
and returns a target puzzle puz♦i ,

(b) after ti steps adversary adversary Ai outputs the solution sol♦i for the puzzle puz♦i that was
returned by oracle OTest,

3. challenger C verifies that A is a valid adversary by checking that t = t1 + ... + tn and qGen =
qGen,1 + ...+ qGen,n then queries Ver on all puzzles and solutions returned by adversaries Ai, i = 1..n
and returns 1 if and only if all these solutions are correct else it returns 0.

Having Γ ∈ {CS, SS} by Win
Γ/CPuz
A,k,d ,n(qGen, t) we denote the probability of the winning event which is

the event in which the adversary outputs a correct solution for the puzzles and the game Exec
Γ/CPuz
A,k,d ,n(qGen, t)

returns 1, i.e.,

Win
Γ/CPuz
A,k,d ,n(qGen, t) = Pr

[
Exec

SS/CPuz
A,k,d ,n (qGen, t) = 1

]
Definition 2 (Difficulty bound). For εk,d ,n : N→ [0, 1] a family of functions indexed by parameters
k, d and n, we say that εk,d ,n(·) is a difficulty bound for a puzzle played in a puzzle solving game Γ/CPuz
with Γ ∈ {CS, SS}, if for any adversary A it holds

Win
Γ/CPuz
A,k,d ,n(qGen, t) ≤ εk,d ,n(qGen, t)

The difficulty bound allows us to define difficulty relations between puzzles. To best of our knowledge,
this aspect was also overlooked by previous work on puzzle difficulty. In what follows, let us denote by
ν(k, d) a negligible constant in k and d that can be set as small as needed by proper choice of the
security parameter k and difficulty level of the puzzle d (subsequently, ν(k, d) denotes a non-negligible
value).

Definition 3 (Difficulty relations). Given two puzzles CPuz♦ and CPuz� played independently in
games Γ♦ and Γ�, we say that:
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1. CPuz♦ in game Γ♦ is at least as difficult as CPuz� in game Γ� and denote it as Γ♦/CPuz♦ 5Dif

Γ�/CPuz� if there exists a difficulty bound ε♦k,d ,n(qGen, t) of Γ♦/CPuz♦ such that for any difficulty

bound ε�k,d ,n(qGen, t) of Γ�/CPuz� it holds ε♦k,d ,n(qGen, t) ≤ ε�k,d ,n(qGen, t) + ν(k, d),

2. CPuz♦ in game Γ♦ is more difficult than CPuz� in game Γ� and denote it as Γ♦/CPuz♦ �Dif

Γ�/CPuz� if there exists a difficulty bound ε♦k,d ,n(qGen, t) of Γ♦/CPuz♦ such that for any difficulty

bound ε�k,d ,n(qGen, t) of Γ�/CPuz� it holds ε♦k,d ,n(qGen, t) + ν(k, d) ≤ ε�k,d ,n(qGen, t),

3. CPuz♦ in game Γ♦ and CPuz� in game Γ� are equally difficult and denote it as Γ♦/CPuz♦ ∼=Dif

Γ�/CPuz� if Γ♦/CPuz♦ 5Dif Γ
�/CPuz� and Γ�/CPuz� 5Dif Γ

♦/CPuz♦.

The difficulty relations allow us now to define difficulty preserving puzzles which would require the
existence of a difficulty bound of the concurrent solving game which is upper bounded by any difficulty
bound of the sequential solving game plus some negligible factor (this invariantly makes the concurrent
solving game and the sequential solving game equally difficult).

Definition 4 (Difficulty preserving puzzle). We say that a puzzle CPuz is difficulty preserving if
CPuz in the sequential solving game is equally difficult to CPuz in the concurrent solving game, i.e,
SS/CPuz ∼=Dif CS/CPuz.

Remark 8. For any adversary in the sequential solving game there exists an adversary in the concurrent
solving game that wins with probability at least equal to it. This is obvious since at worst the adversary
in the concurrent solving game can work as a challenger for the adversary in the sequential solving
game. Thus, any puzzle in the sequential solving game is at least as hard as in the concurrent solving
game.

Remark 9. In Exec
Γ/CPuz
A,k,d ,n(qGen, t) we assumed puzzles of the same difficulty level. It is easy however

to extend this definition to puzzles of various difficulty levels as well. This can be done by replacing
in both the sequential and concurrent games the value of d with a vector containing various difficulty
levels, e.g., d =< d1, d2, ..., dn >. The difficulty preserving condition will now simply enforce that for the
same set of difficulty levels the concurrent solving game is as hard as the sequential solving game. Such
an extension to puzzles of multiple difficulty levels does not appear to be possible with the definition
from [28] since multiple puzzle difficulty is linked inextricably to single puzzle difficulty, but for precisely
the same difficulty parameter d.

In what follows, we define the security properties of puzzles by comparing the success of an adversary
in solving them with that of an honest party that simply runs the Find algorithm. Below we clarify what
is the average and the worst case solving time by such an honest party; we start with the former. We
write ExecCPuzFind,k,d ,n(t) for the random variable obtained by executing the experiment defined above with
a “benign” adversary who for each puzzle that it obtains as challenge it solves it using the Find algorithm
(note that qGen is missing since this parameter is irrelevant for the solving algorithm). The following
definition captures the average probability of solving n puzzles of difficulty d in time t.

Definition 5 (Find bound). For a given CPuz we denote by ζCPuzk,d ,n(t) the probability that Find correctly

finishes in at most t steps, i.e., ζCPuzk,d ,n(t) = Pr
[
ExecCPuzFind,k,d ,n(t) = 1

]
.

The next definition identifies the maximum number of steps needed by the Find algorithm to solve n
puzzles with probability 1. Note that since the find bound ζCPuzk,d ,n(t) comes from game ExecCPuzFind,k,d ,n(t) the
same probability distribution as in the case of the solving games is assumed for the puzzles instances.

Definition 6 (Maximum solving time). For a given CPuz the maximum solving time of CPuz is
tmax if tmax is the minimum number of steps at which ζCPuzk,d ,n(t) is 1, i.e., ζCPuzk,d ,n(tmax) = 1, ζCPuzk,d ,n(t′max) <
1,∀t′max < tmax.
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Definition 7 (Average solving time). For a given CPuz we define the average solving time as the
average number of steps required by Find, i.e.,

tavr(k, n, d) =
∑

i=1,tmax

i ·
[
ζCPuzk,d ,n(i)− ζCPuzk,d ,n(i− 1)

]
.

Example 1. Consider for example the HashTrail puzzle. If one considers the hash function to be
simulated by a random oracle, we have tmax =∞ and tavr = 2d. Thus, there are puzzles for which tmax

is infinite while tavr is finite. On the contrary for the HashInversion puzzle both the maximum solving
time and average solving time are finite since we have tmax = 2d and tavr = 2d−1.

Definition 8 (Optimal puzzle). We say that CPuz is optimal if at any number of steps and any
number of puzzles the success probability of any adversary is upper bounded by the success probability
of the solving algorithm of the puzzle plus some negligible factor in the difficulty level and security
parameter, i.e., ∀t, n, εk,d ,n(qGen, t) ≤ ζCPuzk,d ,n(t) + ν(k, d).

The next proposition establishes the link between optimal puzzles and difficulty preserving puzzles
showing that optimality is the desired property.

Proposition 1. Assume multiple puzzles are solved through Find in the usual way by independently
running Find on each of the puzzles, which inextricably makes the average solving time for n puzzles of
difficulty d to be n times the average solving time for a puzzle of difficulty 1, i.e., ∀n, d, tavr(k, d, n) =
n · tavr(k, d, 1). If CPuz is optimal then CPuz is difficulty preserving.

To verify the statement in Proposition 1 we need to show that SS/CPuz ∼=Dif CS/CPuz. The sequential
solving game is obviously at least as hard as the concurrent solving game SS/CPuz 5Dif CS/CPuz. Since
the puzzle is optimal we have εk,d ,n(qGen, t) ≤ ζCPuzk,d ,n(t) + ν(k, d) and thus there exists a difficulty bound

of the concurrent game which is smaller than the bound of the solving algorithm ζCPuzk,d ,n(t) plus negligible.

We show that any bound of the sequential solving game is even bigger than ζCPuzk,d ,n(t) with some negligible
an thus CS/CPuz 5Dif SS/CPuz. For this, assume an adversary in the sequential that simply runs Find
at each iteration and outputs some random solution for each puzzle that Find failed to solve in the
predefined number of steps. This adversary upper bounds Find since it has the same probability to win
as Find plus some negligible factor that it guessed the solution (by returning some random value) which
completes our argument.

Remark 10. The optimality condition εk,d ,n(qGen, t) ≤ ζCPuzk,d ,n(t) + ν(k, d) ensures that the bound from
the concurrent solving game, i.e., εk,d ,n(qGen, t), is ν(k, d) tight.

Remark 11. The condition εk,d,n(t) ≤ εk,d,1(t/n) is enough to ensure that an optimal puzzle, i.e., a
puzzle for which ∀n, d, |εk,d ,n(qGen, t) − ζCPuzk,d ,n(t)| ≤ ν(k, d), is difficulty preserving. This is trivial to
prove, but it seems that the condition εk,d,n(t) ≤ εk,d,1(t/n) is not so trivial since none of the puzzles
that we analyze next satisfies it (one could easily plot the difficulty bounds to verify this).

Fairness of the first kind or fairness in answering means that an adversary that failed to solve
the puzzle cannot lie about this while fairness of the second kind or fairness in solving means that
the adversary cannot win against the puzzle in less steps than tmax (all these up to some negligible
probability in the difficulty and security parameters).

Definition 9 (Fairness of first and second kind). Let Ã denote a semi-honest adversary that in
game Γ ∈ {CS, SS} plays with the following restriction: in step 3 of the concurrent solving game (or

2.b of the sequential solving game) he is allowed just to run Find for t steps. Let ¬SolvedΓ/CPuz
♦

A,k,d ,n (qGen, t)

denote the event that Find didn’t return a solution for the puzzle instance CPuz♦ returned by the OTest
oracle in step 2. We say that puzzle CPuz played in game Γ ∈ {CS, SS} has:

11



1. fairness of the first kind (or fairness in answering) if for any puzzle instance CPuz♦ the probability
that the adversary wins given that he failed to solve the puzzle in t steps is bounded by a negligible
constant in the difficulty parameter and security level, i.e.,

Pr
[
Win

Γ/CPuz♦

Ã,k,d ,n
(qGen, t)

∣∣¬SolvedΓ/CPuz♦
Ã,k,d ,n

(qGen, t)
]
≤ ν(k, d), ∀t < tmax

2. fairness of the second kind (or fairness in solving) if the probability that the adversary wins in less
than tmax steps is bounded by a negligible constant in the difficulty parameter and security level, i.e.,

Pr
[
Win

Γ/CPuz
A,k,d ,n(qGen, t)

]
≤ ν(k, d),∀t < tmax

Example 2. To clarify these notions, consider again the HashTrail and HashInversion puzzles. HashTrail
has fairness of the first kind since if the adversary failed to ask the hashing oracle an input for which the
output has d trailing zeroes then the probability to guess such an input, after any number of failed steps,
is still 2d. In the case of the HashInversion puzzle this doesn’t hold since after t calls to the hashing
oracle the probability to guess the solution is (2d − t)−1 which is non-constant and non-negligible in
the difficulty level. Thus the HashInversion puzzle doesn’t have fairness in answering. None of these
two puzzles has fairness in solving since the probability to solve them increases at each step toward
a non-negligible value. The time lock puzzle on the other hand has fairness in solving and implicitly
fairness in answering. By definition, fairness of the second kind implies fairness of the first kind.

Remark 12. If CPuz has fairness in solving then the average solving time equals the maximum solving
time up to some negligible value in the security parameter k and difficulty level d, i.e., ∀n, d, |tavr(k, d, n)−
tmax(k, d, n)| ≤ ν(k, d).

3.3 New difficulty bounds for HashTrail and HashInversion

We now establish tight security bounds for the HashInversion and HashTrail puzzles. The proofs of the
following theorems can be found in Appendix B.

Theorem 1. In the random oracle model, the HashTrail puzzle is optimal and difficulty preserving with
tavr(k, d, 1) = 2d, tmax(k, d, 1) =∞ and solving and difficulty bounds:

ζHT
k,d,n(t) =

∑
i=n,t

(
i− 1

n− 1

)
· 1

2nd
·
(

1− 1

2d

)i−n
, εHT

k,d,n(t) ≤ ζHT
k,d,n(t) +

1

2d − 1
+
q2
Gen

2k+1
.

Remark 13. For HashTrail, in [28] the advantage is upper bounded by q+n
n·2d using Markov inequality -

obviously, q
2d

is a bound for the probability to solve 1 puzzle in q queries and dividing it with n gives a
bound of the probability for n instances. While such a bound is easy to prove, Figure 2 shows how loose
this is compared to the advantage from the previous theorem for a small numerical example. In section
2 we showed that loose bounds cannot say much about the difficulty of solving multiple puzzles.

Theorem 2. Let [zi]P (z) denote the coefficient of zi in the expansion of polynomial P (z). In the random
oracle model, the HashInversion puzzle is optimal and difficulty preserving with tavr(k, d, 1) = 2d−1,
tmax(k, d, 1) = 2d and solving and difficulty bounds:

ζHI
k,d,n(t) =

∑
i=n,t

[zi]

(
z · 1− z2d

1− z

)n
· 1

2nd
, εHI

k,d,n(t) ≤ ζHI
k,d,n(t) +

n

2d
+

q2
Gen

2k−d+1
.
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Remark 14. In [28] the advantage of HashInversion is upper bounded by
( q+n
n·2d
)n

. As Figure 2 shows
for a small numerical example, the advantage of the solving algorithm from the previous theorem is
much bigger, thus the bound in [28] is wrong.

Remark 15. The bounds from Theorem 1 and Theorem 2 are not suitable for computation at large
values of the difficulty parameters d or n. Nonetheless, we can manipulate them as abstract functions
to prove (see Appendix B) that difficulty is preserved for multiple puzzle instances while relying on
approximations that are not tight enough is not reliable within our framework. Nevertheless, to make
computations feasible we claim the following approximations of the bounds:

εHT
k,d,n(t) ≤

[
1−

(
1− 1

2d

)t+1
]n

+
1

2d − 1
+
q2
Gen

2k+1

,

εHI
k,d,n(t) ≤ 1

n

(
t− n+ 1

2d

)n
+
n

2d
+

q2
Gen

2k−d+1
.

.

Figure 3 shows a graphical depiction of the approximate bounds compared to the tight bounds of the
previous two theorems and the bounds in [28] (also see Fig. 2 for the previous two bounds). Obtaining
tighter approximations may be subject of future work for us.
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Fig. 3: Graphical depiction of the approximate bounds (dotted line) vs. the tighter bounds and the
bounds from Stebila et al. at n = 3, d = 8 for HashTrail (i) and HashInversion (ii) puzzles

4 DoS resilience

Defining resilience against resource exhaustion DoS is a non-trivial task that requires subtle analysis of
the costs incurred by the computational steps done on the server side. In practice, choosing the right
amount of work that needs to be done in order to gain access to a particular resource on the server side is
a matter of protocol engineering, rather than cryptography. Notably, as the server resources are always
limited, when the number of honest clients exceeds the total amount of resources, resource exhaustion
is unavoidable. Thus from the protocol design, the best one could do is to hinder an adversary from
claiming resources in the name of potentially many honest participants - this is were proof-of-work
comes into action.

We assume the generic construction in which a protocol is prefixed by three rounds in which the
client requests and receives the puzzle, then sends the solution to the server, and denote this client
puzzle protocol as Π(CPuz). Two main conditions must be met by the puzzle in order to make the
protocol secure: first, the puzzles must be unforgeable (Chen et al. [9]), otherwise an adversary may
reply with solution for easier puzzles (generated by himself), second, the puzzles must be difficulty
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preserving (Stebila et al. [28]), otherwise an adversary may solve more puzzles easier. Unforgeability
is essential in assuring DoS resilience. In [9] it is observed for the first time that the client puzzles
of Jules and Brainard [20] are not unforgeable and this can cause a DDoS attack. Later, in [28] it is
outlined that unforgeability is not an intrinsic property of a puzzle since non-interactive puzzles cannot
be produced as unforgeable (as they are generated by the client himself). But in the same work, for
the DoS countermeasure protocol the puzzle itself is augmented with a MAC computed with the server
secret key which achieves essentially the same objective as unforgeability. A third condition which must
be met is that for any solution provided by some client it must not be possible by the adversary to
claim the work as his own (this condition is already present in [28] and several other lines of work).
Although this is usually not defined as a specific property for a puzzle, puzzles protocols are usually
designed in such way that the solution is bound with the solver’s identity so that it cannot be stolen.
Indeed, there are scenarios in which this is not possible. For example consider that the client identity is
an IP address, as long as IPs can be spoofed by adversaries it will not be possible to protect the clients
work (given that a secure channel between clients and server does not exist).

Figure 4 depicts a generic client puzzle protocol. For technical reasons we assume the existence of a
secure timer on the server side.

4.1 DoS resilience and puzzle difficulty

A weakness of an existing approach. The only existing formal definition of computational security
for DoS resilience is due to Stebila et al. and builds directly on the difficulty of puzzle systems [28].
Essentially, it requires that an adversary cannot claim more resources than the number of puzzles he is
able to solve in its permitted running time. As specified in [28], the definition of DoS resilience means
in fact ε hardness, that is, an adversary can finish the protocol with probability ε given that he spent
a predefined number of computational steps. From this perspective, the definition from [28] is correct,
but is only part of the story. The reasons is that DoS resistance means something more, namely, that
an adversary will not be able to consume all the responder resources (e.g., all available connections at
some instant in time or during a particular interval). The problem with the definition in [28] is that
it disregards an important aspect of puzzle defense against DoS, namely puzzle management. Puzzles
used for DoS resilience come with an expiration time to avoid what we call a next day attack where an
adversary first spends large amounts of resources to solve a large amount of puzzles and later uses their
solutions to claim the corresponding resources in a much shorter interval. Although management can be
built on top of some puzzle defense schemes, strictly speaking the definition of [28] allows for next day
attacks as the execution that is considered looks directly at how many puzzles an adversary can solve in
time t (and this amount is bounded by puzzle difficulty). The definition itself does not account for the
possibility that the puzzles sent to claim resources could have been solved earlier. Introducing puzzle
expiry, as a parameter in the adversary running time, seems to be the only reasonable way to tackle
the question of DoS resilience and more, to determine precise bounds on the effectiveness of puzzles.
Without it, the DoS-resilience definition will at least fail to send the correct application message while
at worst it will not allow bridging with the efficiency limitations that we prove in what follows.

Our approach. To prevent such attacks we propose two measures: first we introduce a fixed lifetime
for the puzzles, then we define resilience as a condition that must hold in any time interval [t2, t1] and
not just for an adversary having runtime t. By Π(CPuz, tpuz ) we denote a protocol Π that is protected
by puzzles generated by CPuz and with lifetime tpuz , i.e., the protocol deems as invalid any solution
received later than tpuz cycles after the generation of the corresponding puzzle. We stress that we do
not consider the detailed cost of running the server program and we take as a premise that puzzles of
difficulty d from CPuz are enough to protect the server.

Protocol attack game. We define the attack game ExecΠ
A(CPuz, k, d, n, tpuz ) based on a two stage ad-

versary. First adversaryA1 is allowed to interact with the server and honest clients via: (1) RequestPuz(str)
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on which the server answers with a new fresh instance puz, (2) SolvePuz(puz) on which any client answers
with a solution sol. Then A1 outputs state information stateA1 to A2 which is allowed to do the same
actions subject only to one restriction: t1 marks the time at which A1 has send its state information
and at time t2 + tpuz adversary A2 must output the solutions to n puzzles created no sooner than t1.
The game returns 1 if the adversary has returned correct solutions for all n puzzles, i.e.,

Win
Π(CPuz,tpuz ,k,d,n)
A (t2 − t1 + tpuz , n) = Pr

[
Exec

Π(CPuz,tpuz ,k,d,n)
A = 1

]

Client (C) Server (S)

Request Puzzle

1. NC ←R NonceSpace str -

Generate Puzzle
2. NS ←R NonceSpace
3. T ← GetCurrentTime
4. str = {C, S,NS , NC , T, tpuz}

5. puz′� puz← Gen(d, str)

Solve Puzzle
6. str = {C, S,NS , NC , T}
7. sol← Find(puz, 2d) puz, sol -

Verify Puzzle
8. if Auth(puz) = false reject
9. else if Ver(puz, sol) = false reject
10. else continue with protocol Π

Fig. 4: Generic Client Puzzle Protocol Π(CPuz)

Definition 10 (DoS Resilience). Let CPuz be an unforgeable, difficulty preserving puzzle. Protocol
Π(CPuz, tpuz , k, d, n) is εk,d,n-DoS resilient if for any t1, t2 ∈ [0, tΠ] with t1 < t2, having an adversary A
that can perform at most tA computations in time t2 − t1 + tpuz it holds:

Pr
[
Win

Π(CPuz,tpuz ,k,d,n)
A (t2 − t1 + tpuz , n)

]
≤ εk,d,n(tA) + ν(k)

Remark 16. Some comments on the parameters follow. Choosing d and tpuz obviously depends on the
practical setting, here we assume these values are fixed. In practice, puzzle life-time should compensate
both for the solving time, as well as for network delays. Thus, puzzle life-time gives bounds for both
the maximum network delay as well as for the minimum computational power for a client to gain the
resource.

Remark 17. The generic protocol must be εk,d,n-DoS resilient if CPuz is unforgeable, difficulty preserv-
ing and if puzzle solutions cannot be spoofed. This can be easily proved since if the adversary manages
to win higher probability then one could use the adversary to win against the puzzle solving game just
by simulating the protocol game.
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4.2 Limitations of practical schemes

While the previous definition is of theoretical interest, it can be translated to practical systems as well.
The motivation behind the limitations that we point out here is in the controversy that still stays
behind the usefulness of puzzles. While puzzles were proposed to combat spam by Dwork and Naor [12]
more than two decades ago, spam is still an increasing problem and there is no practical large scale
implementation with PoW against spam. It was shown in fact by the work of Laurie and Clayton [22],
published more than a decade later, that puzzles may not work. A detailed economical analysis in
done in [22] and the main argument appears to be that the computational cost at which puzzles are
effective against spam becomes prohibitive for large lists operators. Although reactions occurred and
several research papers showed that when used with other mechanisms (such as reputation systems)
proof-of-work can actually work [23], up to this day there is no practical wide spread system that uses
PoW for combating spam.

On the side DoS resilience, things are apparently different with a huge amount of proposals for
augmenting protocols with client puzzles and practical experiments that show them to work, e.g., [3],
TCP/IP [20], SSL/TLS [10], etc. Still there is no result in the spirit of Laurie and Clayton [22] to
disapprove this. But despite a large number of practical proposals, there is little attention paid to the
actual practical effectiveness of such mechanisms and a rigorous treatment on the parameters of such
protocols is usually absent. Most of the proposals are based on common sense, e.g., when a server is under
attack the hardness of the PoW is increased, and on empirical observations, e.g., the best protection is
achieved when the difficulty is set to a certain threshold. But there is no rigorous treatment for some
fundamental questions such as: when are PoWs effective and when they are not? Notable exceptions are
more recent works which analyze the effectiveness of client puzzles in the rigorous framework provided
by game theory [13], [24] and well before that [7]. Game theory is the right tool when one wants to
address the revenue of the adversary but it is not always helpful since not all adversaries are motivated
by the revenue. Malicious adversaries will simply want to lock the network regardless of the revenue.
In what follows we a give simple answer to these questions using rules of thumb that can be straight
forwardly applied to find limitations.

A more practical viewpoint. In practice, DoS is usually analyzed by means of queuing theory and
the main parameter is service time θservice which gives the maximum input rate that can be handled by
the system. For example, if service time is θservice = 10ms then the server can handle a maximum input
rate λ = 100 connections each second and beyond this the systems gets saturated (leading to a waiting
queue than can grow without bound). Thus we we will use a simple model which accounts for the arrival
rate and computational power of the adversary. Then we analyze three commonly used PoW schemes:
the basic PoW scheme (Figure 7), the filtering based PoW scheme which selects different difficulties
for clients and adversaries (Figure 8) and the cascade PoW scheme which adds an initial PoW to the
filtering (Figure 9). The filtering works by classifying the principals into honest and dishonest. While
dishonest connections can be instantly dropped (which is supported by the computational model by
increasing puzzle difficulty to ∞ in case of adversaries), there are still dishonest connections that come
from the false negative rate of the filter β. Consequently, a β fraction of the connections are still of
adversarial nature and they cannot be instantly dropped since they are taken as coming from honest
clients. We denote these schemes as ΠBasic

tpuz ,dinit
(CPuz), ΠFilter

tpuz ,dA,dC
(CPuz) and ΠFilter

tpuz ,dA,dC
(CPuz) where each

d denotes the difficulty level of the corresponding PoW (for simplicity we do skip the security parameter
k from our notations since this analysis is done at a network level, assuming cryptography to be perfect).
For each of these we outline practical bounds on effectiveness. Figure 5 outlines the parameters of our
scenario and Figure 6 depicts honest clients and the adversary arriving at average rates of λC and λA.
We assume that the service is locked when the rate of arrivals exceeds the inverse of the serving time,
i.e., θ−1

service (which is the total number of resources that can be provided by the server). This means
that the DoS condition is λA > θ−1

service (whenever the DoS is caused by the adversary alone).
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In the proof of the following theorem (found in Appendix C) note that the lifetime of the puzzle
tpuz from the εk,d,n-DoS resilience is used to derive a practical bound that depends strictly on the com-
putational resources of the participants and on the maximum acceptable load of the server θ−1

service . The
theorem links the efficacy of a puzzle-based DoS defense system with the parameters of the underlying
protocol. Informally, the theorem states that a puzzle scheme cannot protect a protocol when the ratio
between the computational power of the adversary and that of the client exceeds the inverse of the ser-
vice time (note that paradoxically this is independent on the hardness of the puzzle, an aspect that to
best of our knowledge is overlooked in previous work). Further, filtering based schemes can compensate
on this but only up to the false negative rate of the filter. As correctly noted in [8], hidden difficulty
puzzles, i.e., puzzles for which the difficulty level remains hidden unless some computational power is
commited to solve them, can also increase effectiveness but we underline a practical bound for these as
well.

θservice service time
λC arrival rate of clients
λA arrival rate of the adversary
πC computational power of clients
πA computational power of adversary
β false negative rate of the filter
dinit difficulty level of PoW-Init
dC difficulty level of PoW-Client
dA difficulty level of PoW-Adv
tpuz puzzle lifetime

Fig. 5: Scenario parameters
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Fig. 6: Generic service model
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Fig. 7: The basic PoW scheme
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C
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

Fig. 8: The filtering based PoW scheme
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PoW-AdvPoW-Adv

PoW-CPoW-C

FilterFilter


C

A

initd

ServiceService



d
C

dA

Fig. 9: The cascade PoW scheme

Theorem 3. Consider server side has service time θservice and the computational resources of the ad-
versary and clients are πA and πC respectively and all these are set to a common reference with the
difficulties, e.g., an adversary can compute πA/dinit PoWs of difficulty dinit. Then the following nega-
tive results hold regardless of puzzle difficulty in any of the PoWs: i) protocol ΠBasic

tpuz ,dinit
(CPuz) cannot

provide DoS protection if πA > πC · θ−1
service and there are no benefits in increasing puzzle difficulty to

more than d = πA, ii) protocol ΠFilter
tpuz ,dA,dC

(CPuz) cannot provide DoS protection if βλA > θ−1
service and
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iii) if puzzle difficulties are hidden in ΠFilter
tpuz ,dA,dC

(CPuz), having βλA > θ−1
service then ΠFilter

tpuz ,dA,dC
(CPuz)

cannot provide protection if βπA > πC · θ−1
service and the same holds for the cascade protection scheme

ΠCascade
tpuz ,dA,dC ,dinit

(CPuz).

Remark 18. The bound outlined in i) seems to justify existing empirical results. Dean and Stub-
blefield [10] provided the first positive results for protecting SSL/TLS by using client puzzles. In the
performance related section, the authors of [10] note that 20-bit puzzles seem to offer the optimal level
of protection. While this observation is only empirical, it is supported by the result of Theorem 3 which
shows d = πA as the maximum difficulty level and indeed in practice the computational power of an
adversary is in the order of 220 hashes per second. For distributed DoS attacks these values must be
scaled up with the size of the bot-net that the adversary controls.

5 Conclusion

We refined difficulty notions for puzzles, bringing light on puzzles that are optimal, difficulty preserving
and possess fairness in answering or solving. New difficulty bounds for two hash based puzzles are also
provided. We showed that these bounds are tight enough to ensure optimality and that the puzzles are
difficulty preserving while we also give reasonable approximations for these bounds to ease computation.
Finally, we introduced a stronger definition for DoS resilience motivated by the observation that previous
definitions may still allow an adversary to mount a successful attack. As this is the third paper proposing
rigorous difficulty notions for client puzzles and showing that previous definitions fail, it is clear that
formalizing puzzles properties is not as easy as it may appear on first sight.

Our definition opens the avenue of studying puzzles and their use in DoS defense in more detail than
was possible in the past (e.g., by introducing new security notions and bounds on their effectiveness
against DoS attacks). Previously, choosing puzzle difficulty in practice was only based on empirical
observations, here we provided a clear upper bound for this as well as a bound on the usefulness of
client puzzles against DoS. Namely, for the basic puzzle protection scheme which is most commonly
employed, puzzles will work only if πA < πC · θ−1

service which places the computational power of the
adversary and clients in a clear, crisp relation with network service time. But nevertheless this limits
the practical use of puzzles due to disparities between the computational power of honest clients and
malicious botnets controlled by adversaries. Current estimates place the average size of botnets in the
order of tens of thousands of computers and this is just an average size (largest botnets reportedly
reaching millions of computers). In such case, the basic PoW approach will almost certainly fail to
protect while filters can help but only if they are good enough to compensate for such disparities.
Our conclusion needs not be interpreted in a pessimistic sense. Formalizing puzzle properties still holds
interesting open questions and relations to main-stream areas in cryptography, e.g., some of the security
bounds that we determined are closely related to the recent work of Bellare et al. on multi-instance
security [6]. However, for practical effectiveness of puzzles, basic approaches as commonly discussed in
the literature appear to be insufficient and there is stringent need for more research in designing filters
and calibrating puzzle difficulties for precise practical needs.
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A Puzzle properties

Some flavours of the notions defined by us appeared in the literature but they have never been formalized
and previous work does not seem to make a clear distinction between them. For example, [2] introduces
informally the notion of computation guarantee which requires that a malicious party cannot solve the
puzzle significantly faster than honest clients. This is what we call optimality. Other papers [30] require
that solving the puzzle be done via deterministic computation – this seems to be what we call an
fairness in solving. For completeness we now enumerate various puzzle properties that can be found in
the literature. Most of them are orthogonal, although we are not aware whether constructions for each
combination of them exists or if they are useful in some protocols.

1. Non-parallelizability. Prohibits and adversary to use distributed computation in solving the puzzle.
The first construction was provided by Rivest et al. in [27] in the context of time released crypto.
Later non-parallelizable constructions were proposed by Tritilanunt et al. in [31] and constructions
based on repeated squarings were studied by Jeckmans [18], Ghassan and Čapkun [21]. A construc-
tion based on computing modular square roots is presented in [19].

2. Batching. A popular technique in the case of the RSA cryptosystem, the ability to verify more
puzzles in parallel can certainly save time on the side of the verifier. This property is discussed
in [30].

3. Granularity as called by Tritilanunt et al. [31] or adjustability of difficulty by Abliz and Znati[2].
Refers to the pattern under which the difficulty level can be scaled: linearly, exponential, etc. One
may want full control on how this difficulty level is adjusted, but some constructions by default allow
only an exponential growth of difficulty (this can be easily fixed in most situations).

4. Non-interactiveness. Allows puzzles to be constructed in the absence of the verifier. This property
was initially used by Back in [4] to combat spam, as one can not expect that the recipient of an
e-mail will be present at the time when the e-mail is sent in order to produce a puzzle for the sender.

5. Unforgeability. Initially proposed by Chen et al. [9] this property prevents an adversary from forging
puzzles. This property was questioned by Stebila et al. [28] in the context of non-interactive puzzles
where the property does not always make sense (as the solver is the one that builds them). Still,
this property is vital for practical scenarios when interaction between principals exists.

6. State. Some constructions require the server side to store information. Stateless puzzles may be
desirable in order to avoid server depletion of memory resources (this is more prevalent in constrained
environments).

7. Freshness. Replaying puzzles to clients can cause resource exhaustion on the client side, freshness
prohibits this. This property is also called tamper-resistance by Abliz and Znati [2].

8. Cost. This can be refined along several lines, namely the cost on the server side (to generate)
or the client side (to solve). Further it can be analyzed along with the unit of cost (CPU time,
memory, bandwidth, etc.) and with the quantity required by one step (one hash function, one
modular squaring, etc.). This is in close relation to the difficulty of the puzzle discussed bellow, but
difficulty is usually defined formally as an upper bound on the adversary advantage in answering a
puzzle, rather than the cost itself for solving the puzzle.

9. Strong puzzle difficulty was introduced by Stebila et al. in [28]. This requires that an adversary is
unable to solve n puzzles easier than n times solving one puzzle. The same property is actually
encountered by Abliz and Znati [2] as correlation-free, with the informal requirement that previous
answers must not help the adversary to solve a new puzzle easier.

10. Resilience to pre-computed attacks. In some scenarios it is relevant if an adversary can perform off-
line computations before obtaining the puzzle itself. Lack of resilience to pre-computed attacks may
allow the adversary to mount a directed attack against a particular principal, despite the existence
of a PoW protocol (performing off-line computations, before a connection is actually requested, is
also immediately achievable in the case of non-interactive puzzles).
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11. Trapdoor. Refers to whether there exists some private information that makes the puzzle easier to
solve. This property along with constructions and practical settings is discussed by Gao in [14].

12. Fairness is defined in [2] as the property that a puzzle should take the same amount of time whatever
the resource of the solver are. This is required in the context of DoS resistance in order to reduce
the capability of a powerful attacker to a regular user. An example in this sense are memory bound
functions from Abadi et al. [1] which rely on memory speed that in contrast to CPU speed is more
uniform between devices.

13. Minimum interference is defined in [2] as a property that requires a puzzle not to interfere with
the user’s regular operations. If the puzzle takes too long then the user may avoid the use of the
puzzle. Possibly, this is more likely related to good engineering of protocols, rather than an intrinsic
property of a puzzle.

14. Uniqueness. Refers to whether a puzzle has or not a unique solution. This property is trivial, but
it is not underlined explicitly in related work. In some contexts this property is not relevant, for
example in most PoW protocols, while it is extremely relevant in others, for example in time-release
crypto. In this later context it is essential that a puzzle has a unique solution since this solution has
to be used as a key to decrypt some particular ciphertext.

B Proofs for the difficulty bounds (Theorems 1 and 2)

As a general procedure, in both proofs for the difficulty bounds we proceed in a similar way by first
establishing the bound of the solving algorithm and then bound the adversary advantage which proves
that the puzzles are optimal. As can be easily noted, the game played by the adversary is the concur-
rent solving game CS and subsequently, as also established by Proposition 1, the puzzles are difficulty
preserving given that the solving algorithm works in a sequential manner (for completeness we prove
that the solving time of n puzzles is n times the solving time for 1 puzzle given any fixed difficulty level
d).

B.1 Proof of Theorem 1

Proof of the solving bound. Suppose that Find finishes at exactly the t-th query and let t = t1+t2+...+tn
where ti denotes the number of queries made to H to solve the ith puzzle. The probability to solve the
ith puzzle at exactly the ti query is obviously (1− 1

2d
)ti−1 · 1

2d
. Since solving each puzzle is an independent

event, the probability to solve the puzzles at exactly t1, t2, ..., tn steps for each puzzle is
∏
i=1,n(1− 1

2d
)ti−1·

1
2d

= (1− 1
2d

)t−n · 1
2nd

. But there are exactly
(
t−1
n−1

)
ways of writing t as a sum of exactly n integers from

which the probability to solve the puzzle follows as: ζHT
k,d,n(t) =

∑
i=n,t

(
i−1
n−1

)
· 1

2nd
·
(
1− 1

2d

)i−n
.

Proof of the adversary advantage. We prove the adversary advantage in the random oracle model.
For this, challenger C simulates H by flipping coins and playing the following game G0 with adversary
A:

(1) The challenger C runs Setup on input 1k then it will flip coins to answer to the adversary A,

(2) The adversary A is allowed to ask OGenSolve, OTest, ComputeHash which C answers as follows:

• on OGenSolve, challenger C picks r ∈ {0, 1}k checks if r is present on its tape and stores it if not
then randomly chooses a solution sol and returns the pair {r, sol},

• on OTest, challenger C queries itself OGenSolve but marks its answers and solutions as {(r♦1 ,
sol♦1 ), (r♦2 , sol

♦
2 ), ..., (r♦n , sol

♦
n )} and returns just {r♦1 , r

♦
2 , ..., r♦n },

• on ComputeHash, challenger C simulates H to the adversary A, that is, he receives (r, sol) from
adversary A, checks if (r, sol) was not already queried and if not he flips coins to get y and stores
stores the triple (r, sol, y) on its tape then returns y to A,
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(3) At any point the adversary A can stop the game by sending C a set of pairs {(r♦1 , sol
♦
1 ), (r♦2 , sol

♦
2 ),

..., (r♦n , sol
♦
n )},

(4) When challenger C receives {(r♦1 , sol
♦
1 ), (r♦2 , sol

♦
2 ), ..., (r♦n , sol

♦
n )} he checks that each {r♦1 , r

♦
2 , ...,

r♦n } are stored on its tape and for each solution it checks that the last d bits of y in {r, sol, y} are
zero. If a triple {r, sol, y} such that the last d bits of y are zero is not present on the tape, then
challenger C flips coins one more time to get a new y and accepts the solution if y ends with d zeros
(note that these values are not stored on the tape). If all these hold then challenger C outputs 1,
otherwise it outputs 0.

Remark 19. For correct simulation of OGenSolve the length l of the correct answer should be chosen
according to the probability distribution of the lengths for a particular difficulty level, i.e., Pr[l] =

(1− (1− 2−d)2l)(1− 2−d)2l−1
.

Let G1 be the same as G0 with the following difference: on OGenSolve, challenger C picks r ∈ {0, 1}k
checks if r is present on its tape and aborts if so, otherwise it continues as in G0 by storing the values

then sending them to A. We have:
∣∣∣Pr
[
A wins G0

]
− Pr

[
A wins G1

]∣∣∣ ≤ q2Gen
2k+1 .

We now bound the adversary advantage in G1. At the end of the game, challenger C inspects his
tape and sets t as the number of queries made to ComputeHash that have an r♦i ,∀i ∈ {1, n} as input. Let
Ei denote the event that for i of the puzzles a pair {r♦, sol♦, y} where y ends with d zeros is not present
on the tape. Obviously, there n+1 possible outcomes of G1: E0, E1, ..., En. In each Ei let Pr

[
A wins Ei

]
be the probability that the adversary has the correct answers for n − i of the puzzles and he guessed
the output of i of them which happens with probability 2−id since the adversary never queried H to get
a correct output. We have:

Pr
[
A wins G1

]
= Pr

[
A wins E0

]
+

1

2d
· Pr
[
A wins E1

]
+

1

22d
· Pr
[
A wins E2

]
+

... +
1

2nd
· Pr
[
A wins En

]
= ζk,d,n(t) +

1

2d
· Pr
[
A wins E1

]
+

+
1

22d
· Pr
[
A wins E2

]
+ ...+

1

2nd
· Pr
[
A wins En

]
<

< ζHT
k,d,n(t) +

1

2d
+

1

22d
+ ...+

1

2nd
< ζHT

k,d,n(t) +
1

2d − 1

By elementary calculations it follows that: WinHashTrailA,k,d ,n (qGen, t) ≤
∣∣∣Pr
[
A wins G0

]
−Pr

[
A wins G1

]∣∣∣+
Pr
[
A wins G1

]
= ζHT

k,d,n(t)+ 1
2d−1

+
q2Gen
2k+1 . The puzzle follows as optimal since εHT

k,d,n(t) ≤ ζHT
k,d,n(t)+ 1

2d−1
+

q2Gen
2k+1 and 1

2d−1
+

q2Gen
2k+1 is negligible in d and k respectively. Now we prove that the puzzle is difficulty

preserving which is trivial to do. For n = 1 it is easy to prove that tavr(k, 1, d) = 2d. This is straight
forward since:

tavr(k, 1, d) =
∑
i=1,∞

i · 1

2d
·
(

1− 1

2d

)i−1

=
1

2d
·
∑
i=1,∞

i ·
(

1− 1

2d

)i−1

=

=
1

2d
· lim
i→∞

i ·
(
1− 1

2d

)i−1 ·
(
− 1

2d

)
−
(
1− 1

2d

)i
+ 1

1
22d

= 2d

We now want to show that n·tavr(k, 1, d) = tavr(k, n, d). By definition we have ζHT
k,d ,n(t) =

∑
i=n,t

(
i−1
n−1

)
·

1
2nd
·
(
1− 1

2d

)i−n
. Thus it follows:
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tavr(k, n, d) =
∑
i=n,∞

i · (ζHT
k,d ,n(t)− ζHT

k,d ,n(t− 1)) =
∑
i=n,∞

i ·
(
i− 1

n− 1

)
· 1

2nd
·
(

1− 1

2d

)i−n

Recall that
(
i
j

)
=
(
i−1
j−1

)
+
(
i−1
j

)
and write

tavr(k, n, d) =
∑
i=n,∞

i ·
[(

i− 2

n− 2

)
+

(
i− 2

n− 1

)]
· 1

2nd
·
(

1− 1

2d

)i−n
=

=
1

2d
·
∑
i=n,∞

i ·
(
i− 2

n− 2

)
· 1

2(n−1)d
·
(

1− 1

2d

)i−n
︸ ︷︷ ︸

tavr(k,n−1,d)+

∑
i=n,∞

(
i− 2

n− 2

)
· 1

2(n−1)d
·
(

1− 1

2d

)i−n
︸ ︷︷ ︸

εk,d,n−1(∞)=1

+

(
1− 1

2d

)
·
∑
i=n,∞

i ·
(
i− 2

n− 1

)
· 1

2nd
·
(

1− 1

2d

)i−n−1

︸ ︷︷ ︸
tavr(k,n,d)+

∑
i=n,∞

(
i− 2

n− 2

)
· 1

2(n−1)d
·
(

1− 1

2d

)i−n
︸ ︷︷ ︸

εk,d,n(∞)=1

Multiply with 2d to get tavr(k, n, d) = tavr(k, n − 1, d) + 2d from which by recurrence we have
tavr(k, n, d) = n · tavr(k, 1, d) which completes the proof.

B.2 Proof of Theorem 2

Proof of the solving bound. Algorithm Find solves n instances in exactly t steps for any set {t1, t2, ..., tn}
such that t = t1 + t2 + ...+ tn and 1 ≤ ti ≤ 2d where each ti denotes the exact number of queries made to
solve the i-th puzzle. The number of such sets is given by the restricted compositions of integer n which

is [zi](z · 1−z2d
1−z )n , i.e., the ways of writing i as sum of n terms each at most 2d. Each such compositions

has probability 1
2nd

, thus the bound of Find follows:

ζHI
k,d,n(t) =

∑
i=n,t

[zi]

(
z · 1− z2d

1− z

)n
· 1

2nd

Proof of the adversary advantage. We prove the adversary advantage in the random oracle model.
For this, challenger C simulates H by flipping coins and playing the following game G0 with adversary
A:

(1) The challenger C runs Setup on input 1k then it will flip coins to answer to the adversary A,

(2) The adversary A then starts to ask OGenSolve, OTest, ComputeHash which C answers as follows:

• on OGenSolve, challenger C picks x ∈ {0, 1}k flips coins to get y = H(x), sets x′ as the first d
bits of x and x′′ as the remaining bits, stores {puz = (x′′, y), sol = x′} on its tape and returns
this value,
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• on OTest, challenger C queries itself OGenSolve but marks its answers and solutions as {(puz♦1 ,
sol♦1 ), (puz♦2 , sol

♦
2 ), ..., (puz♦n , sol

♦
n )} and returns just {puz♦1 , puz

♦
2 , ..., puz♦n },

• on ComputeHash, challenger C simulates H to the adversary A, that is, he receives sol, x′′ from
adversary A, it inspects its tape to see if a triple sol, x′′, y is present on its tape and returns y if
so, otherwise it flips coins to get an y and stores the triple {sol, x′′, y} on its tape then returns
y to A.

(3) At any point the adversaryA can stop the game by sending C a set of pairs {(puz♦1 , sol
♦
1 ), (puz♦2 , sol

♦
2 ),

..., (puz♦n , sol
♦
n )},

(4) When challenger C receives {(puz♦1 , sol
♦
1 ), (puz♦2 , sol

♦
2 ), ..., (puz♦n , sol

♦
n )} he checks that each {puz♦1 , r

♦
2 ,

..., puz♦n } is on its tape and for each puzzle and solution it checks that a triple sol, x′′, y is present
on its tape. If these hold then challenger C outputs 1, otherwise it outputs 0.

Let G1 be the same as G0 with the following difference: on OGenSolve, challenger C picks x ∈ {0, 1}k
checks if x′ is already present on its tape and aborts if so, otherwise it continues as in G0 and stores it
then sends it to A. We have:

∣∣∣Pr
[
A wins G0

]
− Pr

[
A wins G1

]∣∣∣ ≤ q2
Gen

2k−d+1
.

We now bound the adversary advantage in G1. At the end of G1 challenger C inspects his tape and
sets t as the number of queries made to ComputeHash that have a target puzzle as input.

Let Ei denote the event that for i of the puzzles the solution is not present on the tape records from
ComputeHash. Obviously, there are n+ 1 possible outcomes of G1: E0, E1, ..., En. In each Ei it must be
that the solution was guessed and passed the verification of the challenger. Note that in each Ei the
challenger has performed exactly i more queries to H and the probability to get a correct solution in

exactly t+ i queries is [zt+1](z · 1−z2d
1−z )n · 1

2nd
.

We make the following relevant observation:

[zi]

(
z · 1− z2d

1− z

)n
· 1

2nd
≤ 1

2d
, ∀i ∈ [n..n · 2d]

This is easy to prove. Note that for n = 1 it holds since each coefficient is 2−d. Now proceed by
induction. Assume this holds for n− 1 and prove that it holds for n. We have:

[zi]

(
z · 1− z2

d

1− z

)n
· 1

2nd
= [zi]

((
z · 1− z2

d

1− z

)n−1

· 1

2(n−1)d
·
(
z + z2 + ...+ z2

d
)
· 1

2d

)
Note that this last product has on the left side the coefficients for n− 1 which are all smaller than

2−d and due to the multiplication to the right hand side all these coefficients are added the divided
again by 2−d, which again gives coefficients at most 2−d.

Thus we have:

Pr
[
A wins GR

]
≤ ζHI

k,d,n(t) + [zt+1]

(
z · 1− z2d

1− z

)n
· 1

2nd
+ [zt+2]

(
z · 1− z2d

1− z

)n
· 1

2nd
+

... +[zt+n]

(
z · 1− z2d

1− z

)n
· 1

2nd

≤ ζHI
k,d,n(t) +

1

2d
+

1

2d
+

1

2d
+ ...+

1

2d
≤ ζHI

k,d,n(t) +
n

2d
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It follows that:

WinHashInvA,k,d ,n(qGen, t) = Pr
[
A wins G0

]
= Pr

[
A wins G0

]
+ Pr

[
A wins G1

]
− Pr

[
A wins G1

]
≤
∣∣∣Pr
[
A wins G0

]
− Pr

[
A wins G1

]∣∣∣+ Pr
[
A wins G1

]
= ζHI

k,d,n(t) +
n

2d
+

q2
Gen

2k−d+1
.

Same as previously, the puzzle is optimal as εHI
k,d,n(t) ≤ ζHI

k,d,n(t) + n
2d

+
q2Gen

2k−d+1 and n
2d

+
q2Gen

2k−d+1 is
negligible in d and k respectively.

To prove that the puzzle is difficulty preserving, for one instance of the puzzle the average solving
time is 2d−1 + 1/2. For n instances the average solving time is given by:

tavr(k, n, d) =
∑

t=n,n·2d
t · [ζHI

k,d,n(t)− ζHI
k,d,n(t− 1)]

Take polynomial P (z) = zn · (1 + z + z2 + ...+ z2d−1)n, derive it and replace z with 1. Notice that
this gives exactly 2nd · tavr(k, n, d) and subsequently we have tavr(k, n, d) = n · (2d−1 + 1/2).

B.3 Proofs on the approximations of the bounds

The first bound requires us to compute:

∑
i=n,t

(
i− 1

n− 1

)
· 1

2nd
·
(

1− 1

2d

)i−n
=

∑
i=0,t−n

(
i+ n− 1

n− 1

)
· 1

2nd
·
(

1− 1

2d

)i
.

By using the binomial identity
(
n
k

)
=
(
n

n−k
)

the term
(
i+n−1
n−1

)
can be rewritten as

(
i+n−1

i

)
and this

is precisely the coefficient of xi in the expansion of (1 + x + x2 + x3 + ...)n (see [26], page 208). While
the sum (1 + x2 + x3 + ...)n ranges to infinity, the coefficient of the i-th term is obviously determined
only by the first i terms and thus contained in (1 + x2 + x3 + ... + xi)n. By replacing x with

(
1− 1

2d

)
the i-th term is exactly the term we are looking for and this is obviously smaller than the sum of the
terms, i.e.,

(
i+ n− 1

n− 1

)
·
(

1− 1

2d

)i
<

[
1 +

(
1− 1

2d

)1

+

(
1− 1

2d

)2

+ ...+

(
1− 1

2d

)i]n

=

[(
1− 1

2d

)i+1 − 1

− 1
2d

]n
=

[
2d − (2d − 1)i+1

2di

]n
Now multiply the right part with 2−nd to get:

ζHT
k,d,n(t) =

∑
i=n,t

(
i− 1

n− 1

)
· 1

2nd
·
(

1− 1

2d

)i−n
<

[
1−

(
1− 1

2d

)i+1
]n
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To approximate the second difficulty bound we work with the coefficients of the polynomial

(
z · 1−z2d

1−z

)n
=

zn
(
z0 + z1 + ...+ z2d−1

)n
. Indeed, these are the same coefficients as previously but we will not use their

binomial expression. To compute the bound ζHI
k,d,n(t) we are simply interested in the sum of the coeffi-

cients from
(
z0 + z1 + ...+ z2d−1

)n
up to the term having zt−n (note that multiplication with zn will

shift all these coefficients to the right with n positions, so we sum up to t−n rather than up to t). The
sum of these coefficients is upper bounded by (z0 + z1 + z2 + ... + zt−n)n if we set z = 1 (indeed, no
term higher than zt−n will contribute to this sum). But this sums all the (t− n)n+ 1 coefficients while
we are interested only in the first t − n of them. Since the first t − n coefficients are the smallest (up
to the term in the middle which is the larger due to the binomial expansion), we can safely divide the
sum with n. Consequently, we can write:

ζHI
k,d,n(t) =

∑
i=n,t

[zi]

(
z · 1− z2d

1− z

)n
· 1

2nd
<

(t− n+ 1)n

n2nd
=

1

n

(
t− n+ 1

2d

)n

C Proofs for limitations of practical schemes (Theorem 3)

Basic scheme. LetR(λ) denote the revenue function for the adversary, that is, the number of connections
earned by the adversary given that he made λ requests to the server. In case of PoW protocols, R(λ)
is bounded by the amount of puzzles that the adversary correctly solved (not necessarily equal to λ).
The maximum number of requests from the adversary is upper bounded by λA which is the maximum
arrival rate of the adversary (limited by network parameters only), i.e., we have λ ∈ [0, λA]. Obviously,
a DoS takes place if R(λ) > θ−1

service since the server can handle at most θ−1
service connections each second.

It also holds that R(λ) ≤ λA since the adversary cannot get more connections than he requested for.
Clearly, while λA is limited by network parameters only, R(λ) is also limited by the number of puzzles
he was able to solve.

Now let Rmax denote the maximum number of connections that the adversary can get, given the
limits of its computational resources. A misleading intuition is that the number of connections granted

to the adversary is upper bounded by Rmax =
πA
dinit

(this represents the maximum number of puzzles

that he is able to solve at each instant of time). But by careful inspection of Definition 10 the difficulty

bound includes the puzzle lifetime tpuz and the correct bound is Rmax =
πA + tpuzπA

dinit
(since all puzzles

computed during tpuz can be used as well to gain connections). But puzzle lifetime tpuz must be bigger
than the time a client needs to solve the puzzle, i.e., tpuz > dinitπ

−1
C , since otherwise clients are unable

to solve the puzzles and cannot get connections anyway. Thus Rmax >
πA
dinit

+
πA
πC

. It follows that for

any number of requests from the adversary (up to the maximum number of connections that he can get
due to limitations on its computational resources) the revenue function is defined as R(λ) = λ, if λ ∈[
0,
πA
dinit

+
πA
πC

]
. Which means that the number of connections (granted to the adversary) drops with

the increase in the difficulty of the puzzle but it never drops below
πA
πC

since: limdinit→+∞R(λ) =
πA
πC

.

Accordingly, the adversary can always get at least πA ·π−1
C connections, regardless of the puzzle difficulty

level, and the DoS condition is met when πA ·π−1
C ≥ θ

−1
service . Obviously πA ·π−1

C is the minimum amount
of connections gained on the side of the adversary and this is met as soon as dinit > πA.

Filtering scheme. Having λ ∈ [0, λA] we build an adversary which gains connections faster than the
inverse of the service time. By previous observation that the number of puzzles solved by the adversary
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includes the puzzles solved during the lifetime of the puzzles let us use the notation π̃A = πA+πA
dC
πC

to

depict a more accurate bound on the computational resources of the adversary. If λ(βdclient+(1−β)dA) <
π̃A the total number of PoWs received by the adversary does not exceed its computational resources,
consequently he solves all PoWs that he receives. Further, if this is not the case then he solves all the
βλ easier PoWs (received due to the false negative rate of the filter) and uses its remaining resources
to solve (π̃A − βλdC)/dA harder PoWs. All this as long as βλ < π̃A/dC a situation in which he solves
only the easier PoWs. The revenue function of our adversary is the following:

R(λ) =


λ, if λ <

π̃A
βdclient + (1− β)dA

π̃A − βλdC
dA

+ βλ, if
π̃A

βdclient + (1− β)dA
≤ λ < π̃A

βdC
π̃A
dC
, if

π̃A
βdC

≤ λ

But λ is limited by λA. Since λA > θ−1
service (indeed, for a DoS attack to make sense, the adversary

arrival rate must exceed the number of connections that can be handled by the server) and πA · π−1
C ≥

θ−1
service clearly in the first and third case of R(λ) the filter cannot help. In the second case by increasing

the difficulty dA he solves at least βλ PoWs and this does not help either if βλ > θ−1
service .

Filtering scheme with hidden difficulty puzzles. We use a similar adversary as previously, except that
he cannot choose to solve only the easier PoW (of the client) since the difficulty is hidden. However, he
can choose to invest only up to dC in each puzzle and renounce to solve it if a solution is not found.
This gives:

R(λ) =


λ, if λ <

π̃A
βdclient + (1− β)dA

π̃A − λdC
dA − dC

+ βλ, if
π̃A

βdclient + (1− β)dA
≤ λ < π̃A

dC

β
π̃A
dC
, if

π̃A
βdC

≤ λ

Same as previously, the first and second branches cannot help. In the third branch, the adversary

again gets more connections than the inverse of the service time if β
π̃A
dC

> θ−1
service .

Cascade scheme. In this case, the difficulty of each client PoW is added to the difficulty of the initial

PoW. This also modifies π̃A to π̃A = πA + πA
dC + dinit

πC
. The revenue of the adversary follows as:

R(λ) =


λ, if λ <

π̃A
βdclient + (1− β)dA + dinit

π̃A − λβ(dC + dinit)

dA
+ βλ, if

π̃A
βdclient + (1− β)dA + dinit

≤ λ < π̃A
βdC + dinit

β
π̃A

βdC + dinit
, if λ >

π̃A
βdC + dinit

On the first and second branches, the Cascade scheme fails to protect from the same reasons as
previously. On the third branch we have:

β
π̃A

βdC + dinit
> β

π̃A
dC + dinit

> β
πA + πA

dC + dinit
πC

dC + dinit
> β

πA
πC

This again shows that if β
πA
πC

> θ−1
service the scheme fails to protect.
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