
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

Fall 9-26-2013

Trust-but-Verify: Guaranteeing the Integrity of User-generated
Content in Online Applications
Akshay Dua
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Computer Sciences Commons, Digital Communications and Networking Commons,
and the Social Media Commons

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Dua, Akshay, "Trust-but-Verify: Guaranteeing the Integrity of User-generated Content in Online Applications" (2013). Dissertations
and Theses. Paper 1425.

10.15760/etd.1424

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1249?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/1425?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.1424
mailto:pdxscholar@pdx.edu

Trust-but-Verify: Guaranteeing the Integrity of User-generated Content in Online

Applications

by

Akshay Dua

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Nirupama Bulusu, Chair

Wu-chang, Feng

Wu-chi, Feng

Tom Shrimpton

Miguel Andres Figliozzi

Portland State University

2013

i

Abstract

Online applications that are open to participation lack reliable methods to es-

tablish the integrity of user-generated information. Users may unknowingly own

compromised devices, or intentionally publish forged information. In these scenar-

ios, applications need some way to determine the “correctness” of autonomously

generated information. Towards that end, this thesis presents a “trust-but-verify”

approach that enables open online applications to independently verify the infor-

mation generated by each participant. In addition to enabling independent verifi-

cation, our framework allows an application to verify less information from more

trustworthy users and verify more information from less trustworthy ones. Thus,

an application can trade-off performance for more integrity, or vice versa. We ap-

ply the trust-but-verify approach to three different classes of online applications

and show how it can enable 1) high-integrity, privacy-preserving, crowd-sourced

sensing 2) non-intrusive cheat detection in online games, and 3) effective spam

prevention in online messaging applications.

ii

To An-cheng Huang and Candy Yiu

for inspiring me to begin this journey.

iii

Acknowledgments

I would like to thank my advisers Dr. Nirupama Bulusu and Dr. Wu-chang Feng

for guiding me through the challenges of doing research, for teaching me to ask

the right questions, for helping me formulate problems, for proof-reading what I

wrote, and for pointing me in the right direction whenever I got stuck. I would

also like to thank James Binkley and Dr. Suresh Singh for advising me on the

problem I addressed during my Research Proficiency Examination. I owe a great

deal to Dr. Wu-chi Feng and Dr. Tom Shrimpton for all their advice and help in

making this dissertation possible and also for serving on my committee. Thank

you Dr. Miguel Andres Figliozzi for agreeing to be on my committee and for all

the valuable advice.

This journey would be more difficult and much less fun without my fellow grad-

uate students Candy Yiu, Emerson Murphy-Hill, Thanh Dang, John Kassebaum,

Phillip Sitbon, Francis Chang, Chuan-Kai Lin, Tom Harke, Ed Kaiser, Kevin Dyer,

Scott Brittel, and Jeremy Steinhauer. Together we shared many enjoyable lunches

and dinners, thought provoking conversations, Foosball games, and excellent re-

search advice. I also greatly appreciate the implementation and research help I

received from my colleagues and co-authors Tien Le, Sam Moffat, Fletcher Hazle-

hurst, Danny Aley, Thai Bui, and Nhan Huynh.

I cannot help but thank the staff at Portland State University, especially Rene

Remillard, Beth Phelps, Sara Smith, Paula Harris, Roxanne Treece, and Krys

Sarreal for always rescuing me from unintentionally breaking the rules.

iv

Special credit goes to my wife Candy Yiu for all her patience and encourage-

ment. I also would not have taken the plunge without the support of my parents,

uncle, and aunt. Moreover, my parents are the reason this dissertation finished at

the time that it did. They have my eternal gratitude for always being there.

Finally, this dissertation could not have been possible without the financial

support I received from NSF grant 0747442.

v

Table of Contents

Abstract . i

Dedication . ii

Acknowledgments . iii

List of Tables . ix

List of Figures . x

1 The Problem . 1

1.1 Background and Motivation . 2

1.2 Research Challenges . 5

1.2.1 High-integrity Crowd-sourced Sensing 5

1.2.2 High-integrity Privacy-preserving Crowd-sourced Sensing . . 6

1.2.3 Non-intrusive Cheat Detection in Online Games 6

1.2.4 Effective Spam Prevention in Online Messaging Applications 7

1.3 Solution Overview . 7

1.4 Thesis Statement . 9

2 The Trust-but-Verify Approach . 10

3 High-integrity Crowd-sourced Sensing 15

3.1 Applying the Trust-but-Verify Approach 16

3.2 Contributions . 17

3.3 System and Threat Model . 18

3.3.1 Threats to the TSP . 19

3.3.2 Threats to the Mobile Proxy 19

3.3.3 Threats not Addressed . 20

3.4 The Trusted Platform Module . 21

3.5 Design . 22

3.5.1 Design Assumptions . 22

vi

3.5.2 Design Rationale . 23

3.5.3 TSP Architecture . 26

3.5.4 Secure Tasking and Aggregation 29

3.6 Implementation . 30

3.6.1 Trusted Sensing Peripheral (TSP) 30

3.6.2 Online Portal . 31

3.6.3 Mobile Proxy . 32

3.6.4 Secure Tasking and Aggregation 32

3.7 Evaluation . 32

3.7.1 TSP Performance . 32

3.7.2 Secure Tasking and Aggregation Protocol 35

3.8 Threat Analysis . 38

3.8.1 Threats to the TSP . 38

3.8.2 Threats to the Mobile Proxy 39

3.9 Related Work . 39

3.10 Discussion . 41

3.11 Conclusion . 42

4 High-integrity Privacy-preserving Crowd-sourced Sensing 43

4.1 Applying the Trust-but-Verify Approach 43

4.2 Contributions . 44

4.3 System Model . 45

4.4 Background . 46

4.4.1 k-anonymity . 46

4.4.2 Hilbert Cloak: k-anonymous Location Cloaking 47

4.4.3 Homomorphic Commitment Scheme 48

4.4.4 Trusted Sensing Peripheral (TSP) 49

4.5 Threat Model . 50

4.6 The Protocol . 51

4.6.1 Requirements . 52

4.6.2 With k Data Sources . 53

4.6.3 With n ≥ k Sources . 57

4.7 Implementation . 57

4.8 Security Analysis . 58

4.9 Evaluation . 59

4.9.1 Detection Time . 59

vii

4.9.2 Source Overhead . 61

4.10 Related Work . 62

4.11 Limitations . 64

4.12 Conclusion . 64

5 Non-intrusive Cheat Detection in Online Games 65

5.1 Applying the Trust-but-Verify Approach 66

5.2 Contributions . 67

5.3 System Model . 67

5.4 Motivation and Related Work . 68

5.5 Explorer . 70

5.6 Cheat Model . 72

5.7 Cheat Detection . 74

5.8 Architecture . 75

5.8.1 Client Components . 76

5.8.2 Server Components . 76

5.9 Results . 77

5.9.1 Experimental Setup . 78

5.9.2 Evaluation . 79

5.10 Conclusion and Future Work . 83

6 Effective Spam Prevention in Online Messaging Applications . . 84

6.1 Applying the Trust-but-Verify Approach 85

6.2 Contributions . 86

6.3 Background . 87

6.3.1 CAPTCHA . 87

6.3.2 Proof-of-work . 88

6.4 System Model . 89

6.5 Communication Protocol . 91

6.5.1 Authentication . 91

6.5.2 Puzzle Delivery . 93

6.5.3 Puzzle Verification . 94

6.6 System Components . 97

6.6.1 Reputation Service . 98

6.6.2 Puzzle Service . 99

6.6.3 Public API . 105

viii

6.7 Implementation . 105

6.7.1 Reputation Service . 106

6.7.2 Puzzle Service . 107

6.7.3 Client API . 108

6.7.4 Server API . 108

6.8 Results . 109

6.8.1 Experimental Setup . 109

6.8.2 Defense-in-Depth . 109

6.8.3 Reputation Accuracy . 112

6.8.4 Performance . 113

6.9 Security Analysis . 115

6.10 Related Work . 118

6.11 Conclusion and Future Work . 119

7 Conclusion . 121

7.1 Future Directions . 122

7.2 Contribution Summary . 122

References . 123

ix

List of Tables

3.1 Average time required to perform and transmit an attestation. . . . 33

3.2 Average current drawn in various TSP energy states. 34

4.1 Normal operation: sources in S collect data and send it to A. A

aggregates the data and forwards the result to C. Please note that

protocol steps below occur at a later time than those above. The

notation e1 → e2 : m implies that entity e1 sends message m to

entity e2. 53

4.2 Protocol steps executed by each entity after C challenges A to prove

the integrity of data received in some interval j. As before, time

increases from top to bottom. 56

4.3 Computational cost of computing commitments for a tuple of data

(xij, yij, dij) on a standard Android smart-phone and the Trusted

Sensing Peripheral (TSP). Note the 95% confidence intervals indi-

cated next to timing measurements. 61

7.1 Contribution Summary . 122

x

List of Figures

2.1 The trust-but-verify system model. Data sources S = s1, ..., sn are

generating and publishing data to a consumer C. The generated

data may optionally be aggregated locally with past data or globally,

by an aggregator A, with data from other sources. The goal of the

trust-but-verify approach is to provide C with a way to determine

if the inputs to the sources were indeed processed in order by the

functions f(·), f1(·), and f2(·) (together called the data generation

functions). 11

2.2 Expected number of time instances before a corrupt zt is detected

for the first time. Here, the zt is being corrupted with probabilities

q ∈ Q, Q = {0.2, 0.3, 0.5, 0.7}, and checked with probabilities .01 ≤
p ≤ .99 respectively. 13

3.1 The TSP publishes data via the participant’s mobile device, which

can then process the data, or forward it as is. 18

3.2 Secure Tasking and Data Aggregation Protocol (STAP) 28

3.3 Trusted Sensing Peripheral with a Bluetooth and GPS module. . . . 30

3.4 Data producers on the mobile proxy communicate with the TSP via

a Python relay service called ’foslisten’. 31

3.5 Battery life and energy usage of the TSP. 35

3.6 Compiled code size comparison of various software components on

the TSP. 36

3.7 Performance of the secure aggregation protocol STAP 37

4.1 System model for privacy-preserving high-integrity crowd-sourced

sensing . 46

4.2 The Hilbert curve (left: 4 × 4, right: 8 × 8). Source: Kalnis et al.

2007 [70] . 48

xi

4.3 The intersection attack: given some previous estimate of a source

si’s location and any new estimate, the intersection of the two re-

veals a finer estimate of si’s location. 51

4.4 Data collection campaign simulated for a region around downtown

Portland, OR. R = [(−122.752◦, 45.455◦), (−122.556◦, 45.560◦)] . . . 58

4.5 Expected number of intervals before aggregator A lying with prob-

ability q is detected by consumer C challenging with probability

p. 60

5.1 After the user enters her move, the game client computes a descrip-

tion of the view (e.g. newly visible map regions). The server trusts

the client to compute this view, but occasionally checks if the view

descriptor was computed correctly. 68

5.2 Explorer overview . 71

5.3 SpotCheck server-side architecture 77

5.4 Alternative architecture: request validation in parallel 78

5.5 Server CPU overhead . 79

5.6 Expected (Ex) and Observed (Ob) number of moves before a cheat

attempt is discovered. Number of cheats that escaped detection are

also shown as a portion of total moves. 80

5.7 State update and request message sizes 81

5.8 Client game rendering latency for SpotCheck, on-demand, and eager

loading . 82

6.1 System model: user’s browser must show proof-of-work before the

web application accepts the user’s message. The dotted line in-

dicates initial setup performed by the web application to use the

MetaCAPTCHA service. 90

6.2 Kerberos authentication overview and how it relates to MetaCAPTCHA

authentication. Figure adapted from Steiner et al. [123] 91

6.3 MetaCAPTCHA authentication and puzzle solution verification . . 92

6.4 The user’s web browser is continuously issued puzzles until it has

spent enough time computing. This amount of time is called the

difficulty-level; more malicious the client, the larger the puzzle difficulty-

level. 93

xii

6.5 Probability that a cheating client correctly solves each of the ran-

domly injected puzzles during a single puzzle solving session. The

total number of puzzles issued is n = 10, the number of randomly

injected puzzles is k = p× n, and q is the probability with which a

client cheats i.e. responds with a random number instead of actually

solving the puzzle. 96

6.6 Design of MetaCAPTCHA . 97

6.7 MetaCAPTCHA’s puzzle configuration dashboard. 103

6.8 Defense-in-depth: using multiple features for spam classification is

better than using one or a few. “Total” implies that all-of-the above

features were used for training the classifier. 110

6.9 Reputation Accuracy: CDF of reputation scores and puzzle difficul-

ties assigned to spammers, non-spammers, and mixed users (those

that sent at least 1 spam and 1 ham) 111

6.10 Distribution of spam and ham sent by mixed users. Mixed users

sent very little spam (between 1 and 8) when compared to the total

messages they posted. Note: columns that exceeded the y-scale

have explicitly marked y-values . 113

6.11 Performance overhead of MetaCAPTCHA when issuing the first

puzzle. 114

6.12 Breakdown (%) of the time spent in issuing the first puzzle. Notice

that 68% of the time is spent in the reputation service due to all

the remote queries that happen there. 115

6.13 MetaCAPTCHA performance overhead when issuing subsequent

puzzles. 116

1

Chapter 1

THE PROBLEM

Online applications that encourage open participation remain vulnerable to spu-

rious information. As examples, consider the following scenarios: (i) A crowd-

sourced sensing application like Waze [143] collects real-time GPS data from its

users for map-building and traffic estimation but has no way to determine if the

published coordinates were indeed generated by a user physically present at that

location. Malicious users can report fake incidents to gain points and an elevated

status. They can also discourage others from taking a certain route by easily

creating multiple emulated devices and publishing locations in a way that indi-

cates congestion on that route, (ii) Malicious players of online games can access

hidden game client memory and learn peer secrets that inform their next move.

These moves would not normally occur without illegal access to hidden game client

memory and are a result of cheating, (iii) online messaging applications like Email,

Twitter, or Facebook still receive copious amounts of spam from software robots

that hijack user accounts [51, 80, 56].

This dissertation aims to provide online applications with the tools to distin-

guish between “genuine” and “fabricated” content. Of interest, is the scenario

where users generate and send the content to the application, which in turn, de-

termines the integrity of that content before processing it any further. Specifically,

this dissertation develops data integrity verification methods that (i) enable high-

integrity privacy-preserving crowd-sourced sensing applications, (ii) facilitate cheat

2

detection in online games, and (iii) effectively combat spam in online messaging

applications.

1.1 BACKGROUND AND MOTIVATION

In this section, we discuss existing approaches that allow an application to verify

the integrity of user-generated content and explain why a new approach is needed.

Quite often, applications employ no specific integrity checking techniques. Thus,

the burden of validating published content is left to the end-user. For example,

the popular social network, Facebook [2], only provides guidelines on how users

can identify fake accounts [1]; the open, collaborative, and online encyclopedia,

Wikipedia [3], only provides guidelines on how readers can identify reliable sources

so that they can determine the validity of the published information for themselves

[4]. When integrity verification methods have been used by applications, they have

traditionally been based on reputation ratings [48, 66, 107], anomaly detection

[29, 26, 104, 78], or user-device monitoring [84, 112].

Reputation Ratings Reputation rating algorithms are used mainly by appli-

cations whose success depends on trust relationships between users. For example,

the popularity of the online marketplace, EBay [41], is attributed to its use of seller

and buyer ratings. The problem, however, is that users may not have any existing

trust relationships to begin with. Thus, the goal of a reputation rating algorithm

is to create and maintain these trust relationships.

A reputation rating algorithm defines, initializes, and updates a trust metric

or “reputation” for each user of the application. The fundamental assumption is

that a user’s past reputation is a good predictor of future behavior, implying that

a user with a better reputation rating can be trusted more. The reputation of a

given user is updated based on what other users perceive that user’s reputation

to be. Thus, each user assigns a reputation rating to every other user it interacts

3

with. Then, multiple ratings for the same user are combined to determine an

overall reputation rating. How this rating is represented depends on the particular

reputation rating algorithm. For example, EBay [41] represents them as discrete

values, whereas Ganeriwal et al. [48] and Jsang et al. [66] represent them using

the Beta distribution.

An important factor in the success of a reputation rating algorithm is how the

overall rating for a particular user is calculated [76]. The overall rating for a given

user is a combination of ratings assigned by other users. There is also the issue of

combining the ratings one user assigns to another user across multiple interactions.

Several approaches have been proposed, the simplest being the average [76].

Unfortunately, reputation ratings are not directly applicable in the scenario un-

der consideration where users are generating and sending content to an application,

but not necessarily interacting with each other.

Anomaly Detection Anomaly detection is used mainly by applications that

collect numerical data from multiple sources, such as from Wireless Sensor Net-

works (WSNs) [29, 26, 104, 78]. The basic assumption is that clusters of sources

produce “similar looking” data (e.g. locality). The goal then is to identify data

samples that “look different” from what is considered “normal” for the cluster.

This requires creating a model for normal data and checking if incoming live data

adheres to that model.

A popular approach for building the model is Principal Component Analysis

(PCA) [65]. Given a set of multi-variate data samples, PCA’s goal is to reduce the

number of variables required to represent the data while still capturing most of the

variation in the data. The way PCA does this is by removing correlated variables

since they carry very little variance information and leave behind the uncorrelated

ones. This essentially reduces the number of dimensions required to represent the

data. Later, a live sample of data can be projected onto the reduced dimensions

4

and checked if the projected point lies too far from the projections of the normal

data samples.

Unlike reputation rating algorithms, anomaly detection is directly applicable in

the crowd-sourced sensing scenario considered in Chapters 3 and 4 where the sen-

sors are personal mobile devices carried by people. However, as indicated earlier in

the Waze [143] example, anomaly detection solutions can be duped by a participant

that emulates multiple colluding participants (called “Sybils”) [37]. Additionally,

if the data sources are few, sparsely distributed, or constantly in motion as in

crowd-sourced sensing, anomaly detection may fail to be accurate [29].

Device Monitoring Device monitoring tries to ensure that the software users

employ to generate and send data to the application is running as expected. This

requires a monitoring service running on the user’s device that is in some way

trusted by the application.

Device monitoring approaches have been used to detect cheating in online

games [112, 69]. Warden [112, 84] is one such monitor used by the popular game

World of Warcraft [19]. Warden tries to find cheat code with known signatures

on a player’s machine by scanning the memory of all running processes. Due to

the use of signature-based detection via widespread scanning, Warden has suffered

from false positives, an inability to detect new cheats, performance issues, and has

been labeled “spyware” by the Electronic Frontier Foundation [81].

As a solution, a more conservative scanner, called Fides [69], was developed

by Kaiser et al. In addition to restricting scanning only to the game client, Fides

looked for anomalies rather than particular cheat signatures. This made Fides

more effective against new attacks whose signatures were not yet know. To detect

anomalies, Fides profiled the game client to establish a model for normal execu-

tion. The profile was then used on the game server to partially emulate the client

and validate memory signatures sent by the scanner. If the client-side memory

5

signatures did not match the “normal” for a given stage in the game, then a client

was assumed to be cheating. However, since the scanner ran on the client — a ma-

chine in control of the cheater — it could be tampered with in ways that avoided

cheat detection. Other challenges included the complexity of accurate game client

profiling and emulation, determining the set of scanned memory locations that

when checked, would reliably detect unknown cheats, and earning a player’s trust

that the scanning will indeed be restricted to game client memory.

1.2 RESEARCH CHALLENGES

The research challenge is to develop integrity verification methods for user-generated

content that address the drawbacks discussed in the previous section, while sat-

isfying the constraints of the individual applications. Specifically, this disserta-

tion develops integrity verification mechanisms that enable high-integrity privacy-

preserving crowd-sourced sensing, non-intrusive cheat detection in online games,

and effective spam prevention in online messaging applications.

1.2.1 High-integrity Crowd-sourced Sensing

Crowd-sourced sensing systems allow people to voluntarily contribute sensed in-

formation (e.g. location, images, audio) using personal sensing devices like smart-

phones [43]. The volunteers collecting the data are called data sources and the

online portal publishing the data received from volunteers is called the data con-

sumer . In this scenario, the data consumer would like to determine if the sensory

data submitted by volunteers accurately represents the phenomenon being sensed.

This is challenging because data sources have autonomous control of their sensing

devices and could therefore modify its firmware to publish fabricated information

instead of what is actually sensed. Sources could also publish false sensor data

using emulated devices rather than physical sensors. Thus, we must find a way

6

to convince the consumer that the sensed data originated from correctly function-

ing physical sensors that actually witnessed the phenomenon. This problem is

addressed in Chapter 3.

1.2.2 High-integrity Privacy-preserving Crowd-sourced Sensing

Another important issue in crowd-sourced sensing is location privacy. In general,

crowd-sourced sensory data is supplemented with a corresponding location that

indicates where that data was sensed. The problem is that the data consumer

could potentially track a source using the published locations. Thus, we must find

a way to guarantee the integrity of published locations without revealing those

locations to the data consumer. This problem is addressed in Chapter 4.

1.2.3 Non-intrusive Cheat Detection in Online Games

A lot of hidden information is present in client programs of most existing online

multi-player games (e.g. unexplored map regions, opponent resource information).

Although a lot of this information is not necessary to render the player’s current

view of the game, it is necessary to render any new views. Having local access

to this information results in efficient game rendering. The problem, is that the

unnecessary hidden information can be used to cheat. For example, a player could

use a “map hack” to uncover a hidden mine field that would otherwise only be

visible with special powers. Unfortunately, if this hidden information is not locally

present, but instead received on-demand from the server, then the game rendering

slows down significantly [75]. What is needed is a more efficient method to detect

moves that are a result of this kind of cheating while also being an alternative to

existing solutions that perform intrusive client-device scanning [112]. This problem

is addressed in Chapter 5.

7

1.2.4 Effective Spam Prevention in Online Messaging Applications

A lot of effort has been devoted to building accurate spam filters that can hide

spam from the user [59, 121, 130, 11], but little is done to effectively prevent it.

The proof-of-work approach has been proposed as an effective spam prevention

technique [40, 15, 149, 44, 68, 64, 77].

Proof-of-work systems can be used by online messaging applications to impose

a cost per online transaction. This cost is in terms of computational work, also

called a puzzle, that a client must correctly execute before being allowed to send a

message. The assumption is that solutions of puzzles are hard to compute and easy

to check [40, 39, 64], and that more malicious users (e.g. spammers) are issued

“harder” puzzles [74, 77]. Puzzles can be computed by the browser behind-the-

scenes and require no user involvement. However, the work done in computing

puzzle solutions is most often wasted because the solution provides no other value

than to aid in checking that the puzzle was correctly executed. The Reusable

Proof-of-Work (RePoW) approach [64] proposes using puzzles whose solutions can

be used for a greater purpose (e.g. protein folding [95]).

Unfortunately, there are very few known reusable proof-of-work puzzles whose

solutions are easy to check [64, 17]. What is needed is a proof-of-work system that

enables issuing generic computational tasks (e.g. protein folding [95]) whose result

can be checked more efficiently than recomputing the task itself. This problem is

addressed in Chapter 6.

1.3 SOLUTION OVERVIEW

We address the research challenges discussed in the previous section by employing

a “trust-but-verify” approach that enables applications to independently verify the

integrity of data published by each user, and do so as often as necessary. In the

case of crowd-sourced sensing applications, the published data is a location and

8

associated sensory information; in the case of online games, it is the player’s next

move; and in the spam prevention scenario, it is the solution of a puzzle.

The idea behind the trust-but-verify approach is to first, identify or define the

data generation functions executed by users, clients, or data sources to create and

publish data, and then, enable the application or data consumer to verify that

those data generation functions were correctly executed. The challenge is in build-

ing verification methods that satisfy the constraints of individual applications. For

example, we will see in Chapter 4 that privacy-preserving crowd-sourced sensing

applications must verify the integrity of data source locations without being pro-

vided with those locations.

Unlike anomaly detection (Section 1.2), the trust-but-verify approach enables

applications to independently verify the integrity of data published by each user.

Unlike device monitoring (Section 1.2), the trust-but-verify approach does not re-

quire intrusive scanners to ensure that generation functions are correctly executed.

It also enables efficient integrity checking by allowing the application to verify less

information from a participant it trusts more, and verify more information from a

participant it trusts less. The details of the trust-but-verify approach have been

presented in Chapter 2.

Applying, the trust-but-verify principles to guarantee the integrity of user-

generated content in crowd-sourced sensing, online gaming, spam prevention sys-

tems have resulted in the following contributions:

• In Chapter 3 we present the design, implementation, and evaluation of the

Trusted Sensing Peripheral (TSP): a sensing device with an embedded trusted-

third-party that attests to the validity of the generated sensory information.

• In Chapter 4 we present the design, implementation, and evaluation of Loca-

tionProof, a protocol that enables TSP-based crowd-sourced location sensors

to prove the integrity of locations without revealing those locations.

9

• In Chapter 5, we present the design, implementation, and evaluation of

SpotCheck, a system for detecting information exposure cheats in online

games.

• In Chapter 6, we present the design, implementation, and evaluation of Meta-

CAPTCHA, an effective spam prevention system for online messaging ap-

plications based on the reusable-proof-of-work approach. MetaCAPTCHA

allows the “work” issued to a user’s device be any generic computation.

1.4 THESIS STATEMENT

The trust-but-verify approach allows online applications that encourage open par-

ticipation to

• independently determine the integrity of data published by each participant

• obtain the desired level of integrity guarantee

• non-intrusively establish data integrity

10

Chapter 2

THE TRUST-BUT-VERIFY APPROACH

As shown in Figure 2.1, the trust-but-verify approach is applicable to a system

in which a set of data sources S = s1, ..., sn periodically send the content they

generate to a data consumer C. The sources are usually user devices and the

consumer is usually the application interested in the data produced by the sources.

At any given time instant t, a source i uses input xi,t to generate content yi,t =

f(xi,t). The input xi,t may be provided by the user or obtained directly from the

environment: for example, in crowd-sourced location sensing applications, sources

publish coordinates that are generated using GPS satellite signals present in the

environment. The generated content yi,t may further be aggregated locally by

the source and globally by an aggregator A before finally reaching a consumer C.

At a given time t, local aggregation involves combining past and current content

{yi,tp : tp ≤ t} while global aggregation combines content {yu,t : su ∈ S} generated

by multiple sources.

Ultimately, the consumer C would like to determine with some confidence that

the received aggregate zt is correct. Here, correctness implies that each input

xi,t was processed in order using only the functions f(·), f1(·), and f2(·); together

called the data generation functions. The goal then, is to develop a data verification

function that allows C to determine if the data generation functions were faithfully

executed over the inputs.

If the data sources and aggregators are trustworthy, there would be no need

for a verification function; C could simply assume that zt is correct. However, C

11

x1, t f (x1,t)
y1,t

f 2(y1,t ,... , yn ,t)
zt

f 1(x1, t−m ' ,... , x1,t ')
x1,t '

s1

C

A

x2, t f (x2, t)
y2,tx2, t '

s2

xn , t f (xn ,t)
yn ,txn , t '

s n

f 1(x 2,t−m ' , ... , x2, t ')

f 1(x n, t−m ' , ... , x n , t ')

yi , t= f 1(f (xi ,t−m) ,... , f (xi ,t))
zt= f 2(y1,t , ... , yn ,t)

?

?

Figure 2.1: The trust-but-verify system model. Data sources S = s1, ..., sn are gen-

erating and publishing data to a consumer C. The generated data may optionally

be aggregated locally with past data or globally, by an aggregator A, with data

from other sources. The goal of the trust-but-verify approach is to provide C with

a way to determine if the inputs to the sources were indeed processed in order by

the functions f(·), f1(·), and f2(·) (together called the data generation functions).

may not always have a way to establish a basis of trust [7]: for example, in crowd-

sourced sensing applications, people volunteer to collect and publish data using

personally owned mobile devices. In this scenario, the consumer has no way of

knowing if those mobile devices are faithfully processing inputs sensed from their

immediate environment. The goal of this work is to provide the data consumer C

with tools to verify the correctness of received aggregate zt, thereby allowing C to

cultivate trust in the sources and aggregators that contributed to computing zt.

More specifically, upon receiving zt, C may challenge the sources and aggregators

to prove its correctness. The sources and aggregators then collectively send back a

12

set of responses Rt that allows C to verify the correctness of zt. A trivial solution is

for each source i to provide C with input xi,t, i.e. Rt = {xi,t : si ∈ S}. C can then

independently compute a value z using the generation functions f(·), f1(·), and

f2(·) over respective subsets of Rt and check if it matches zt. The problem with this

approach is that it is not generally applicable. Consider again, our crowd-sourced

location-sensing example: here, the sources have no way of sending the analog

GPS satellite signals they sensed in their immediate environment. Thus, the set

of responses Rt and the verification method must be tailored to each application.

Notice that the trust-but-verify approach does not attempt to establish the au-

thenticity of input xi,t, it attempts only to determine if xi,t is faithfully processed

at each intermediate step.

Now, assuming that a verification procedure has been defined, the data con-

sumer may choose to check the integrity of aggregate zt during only a subset of

time instances {t : tbegin ≤ t ≤ tcurr} where tbegin represents the time data collec-

tion began and tcurr represents the current time. How often a consumer checks

the integrity of an aggregate is called the consumer’s verification strategy . Pick-

ing a strategy will depend on a trade-off between how much unchecked data the

consumer can tolerate and the amount of computational resources it can devote

to integrity checking. The advantage of the trust-but-verify approach is that a

consumer can pick a strategy.

Once a consumer picks a strategy, it can estimate the amount of time before a

fabricated aggregate is detected using the discrete negative binomial distribution.

The discrete negative binomial distribution NB(r, p) describes the probability of

the number of “successes” in a sequence of binomial trials before r “failures” occur.

The success and failure probabilities in any given trial are p and 1−p respectively.

If we assume that received data zt is being corrupted with probability q and that

the consumer is checking the integrity of zt with probability p, then the probability

of detecting a corrupt zt during time instant t is pq. Now, in the context of the

13

negative binomial distribution, “success” can be represented by the event, “not

detecting a corrupt zt”, and “failure” can be represented by the event, “detecting

a corrupt zt”. Thus, the success and failure probabilities in any time instant

t are 1 − pq and pq respectively. Also, since we are interested in the number of

“successes” before the first “failure”, the parameter r = 1. Given these distribution

parameters, the expected number of time instants before the first corrupt zt is

detected can be written as:

1− pq
pq

Figure 2.2 shows the expected number of time instants before detecting a cor-

rupt zt given q ∈ Q, Q = {0.2, 0.3, 0.5, 0.7}, and .01 ≤ p ≤ .99. We can see that

when checking 20% of the time (p = 0.2), the consumer is expected to detect a

corrupt zt within 7 to 24 time instants given that q ∈ Q.

Figure 2.2: Expected number of time instances before a corrupt zt is detected

for the first time. Here, the zt is being corrupted with probabilities q ∈ Q, Q =

{0.2, 0.3, 0.5, 0.7}, and checked with probabilities .01 ≤ p ≤ .99 respectively.

In the following chapters, we explain how the trust-but-verify approach can be

14

used to determine the correctness of data received from sources and aggregators

in different applications.

15

Chapter 3

HIGH-INTEGRITY CROWD-SOURCED SENSING

Crowd-sourced sensing systems allow people to voluntarily contribute sensed in-

formation (e.g. location, images, audio) to Internet portals like SensorMap [93]

using a personal sensing device [43]. These systems have the potential to pro-

vide unprecedented insight into our local environment because data is collected

everywhere people are. For example, Paulos et al. [96] conducted a field study

in Accra, Ghana where they retrofitted seven taxis with pollution sensors that

constantly collected air quality information en route. The proliferation of increas-

ingly connected, programmable, and sensor-rich mobile platforms like smartphones

constantly fuels the growth of crowd-sourced sensing applications. Noteworthy ex-

amples include traffic, health, and safety monitoring; citizen science initiatives;

and personal environmental impact reporting [31, 131, 106, 96]

This use of existing mobile infrastructure makes crowd-sourced sensing cheaper

to deploy than dedicated sensor networks. Data collected from such systems can

improve understanding of local environments, help shape public policy or facilitate

new scientific research. However, government and researchers alike will be reluctant

to use the data if they cannot trust its integrity.

This lack of trust would be unfounded if sensed data were infeasible to fab-

ricate, but that is not the case. Consider a crowd-sourced traffic navigation sys-

tem like Waze [143]. Participants of Waze download a client application on their

smart phones that activates the phone’s internal GPS receiver, and periodically re-

ports their GPS coordinates to Waze. With sufficient user participation, Waze can

provide optimal routes to destinations based on the real-time traffic information

16

learned from participants. A malicious participant could easily fool Waze by mod-

ifying the client application to publish false hazards in order to score points. He

could launch multiple emulated smart phones on resource-abundant hardware and

submit random GPS coordinates. We classify the former as a software attack and

the latter as a Sybil attack [37]. The aforementioned attacks are possible mainly

because the sensing devices (e.g. smart phones) are under autonomous control of

the participants. Although our example highlights the GPS sensor, software and

Sybil attacks are applicable to any of the phone’s sensors.

3.1 APPLYING THE TRUST-BUT-VERIFY APPROACH

We address software and Sybil attacks by enabling crowd-sourced sensing applica-

tions to establish the integrity of the sensory information received from the partici-

pants. Sensory information has integrity if it was captured by appropriate physical

sensors that actually witnessed the phenomenon. This chapter establishes this fact

by applying the trust-but-verify approach. First, we must identify the data to ver-

ify: in this case, it is the output of the sensors. Next, the generation functions

for that data must be identified: in crowd-sourced sensing applications, these are

the functions in the device driver and sensing platform that together collect data

from the environment. The final step is to develop a verification function that

allows the application to determine that the generation functions were faithfully

executed. The approach we use here, is to build a trustworthy sensing platform

that can attest to the integrity of the software running on it. The attestation is

like a signature, that when verified by a remote party, guarantees that the platform

was running a certain unmodified version of software. Trust in the platform, in

turn, induces trust in the faithful execution of the generation functions. Sections

3.3 – 3.6 describe how to build this trustworthy sensing platform.

Applications may also require that trustworthy sensing platforms aggregate

their data locally before publishing it. In this case, the aggregation function is an

17

additional generation function whose faithful execution must be guaranteed by the

trust-but-verify approach. We describe how this is done in Section 4.6.

3.2 CONTRIBUTIONS

This chapter presents a trusted-hardware based sensing platform to combat the

above attacks, enabling crowd-sourced collection of high-integrity raw or aggregate

data. Its contributions are:

• The design and implementation of a Trusted Sensing Peripheral (TSP). The

TSP is a sensing platform that consists of a Trusted Platform Module (TPM)

[134] and hardware sensors. Our goal is to make the TSP economically

infeasible to emulate or modify without being detected. The TPM facilitates

this by attesting to the authenticity and integrity of the TSP as well as the

sensor data. Successfully verified attestations prove to a data receiver, such

as an online portal, that the data is indeed authentic and was not altered,

either by the TSP or during transit. Experiments show that the TSP is very

energy efficient: it has a projected battery life of over 80 days when collecting,

attesting, and transmitting a temperature sample every 30 seconds.

• STAP: an efficient, end-to-end, high-integrity, data aggregation protocol for

crowd-sourced sensing. The TSP publishes sensor data to an online portal

via the participant’s mobile device acting as a forwarding proxy. To reduce

the energy expended in transmitting raw data, and the processing overhead

at the portal, the mobile proxy could aggregate the TSP’s raw data before

forwarding it. But, a malicious proxy could fabricate the aggregates instead

of actually computing them from the TSP’s raw trusted data. The Secure

Tasking and Aggregation Protocol (STAP) modeled on a bit-commitment

scheme [27, 16], uses a pseudo-random challenge-response mechanism that

allows a portal to detect a lying proxy. By randomly challenging only 20%

18

of the aggregates, the portal can detect a lying proxy within the first six false

aggregates received.

• A high-integrity platform that augments legacy mobile devices with trustwor-

thy sensing. The Trusted Sensing Peripheral (TSP) enables legacy untrust-

worthy mobile devices to produce trusted data. Section 3.5.2 discusses chal-

lenges to making contemporary sensing-capable phones trustworthy: namely

the absence of proper hardware support, distrust in trusted hardware, and

growing exposure to remote attacks. Besides trustworthy sensing, the TSP

provides greater sensing modalities than commodity mobile devices.

3.3 SYSTEM AND THREAT MODEL

As Figure 3.1 shows, the TSP collects sensor data, has the TPM sign it, and

forwards it to the mobile proxy, which either aggregates the raw data or forwards

it as is. Adversaries may compromise either the TSP, or the mobile proxy.

Figure 3.1: The TSP publishes data via the participant’s mobile device, which can

then process the data, or forward it as is.

In the context of the trust-but-verify approach, the TSP is the data source, the

mobile proxy is the local aggregator, and the portal is the data consumer. The

generation functions include those on the TSP that perform the sensing (e.g. func-

tions in the sensing device drivers) and any data aggregation functions executed

by the mobile proxy.

19

3.3.1 Threats to the TSP

Our goal is to prevent or detect software and Sybil attacks against the TSP, to

ensure that data reported to the portal was not modified in unintended ways by

the TSP software, and did not originate from emulated, simulated, or fake devices.

We considered the following specific threats:

• Software modification. This refers to any modification of the TSP firmware.

It can happen remotely or with physical access to the TSP. An adversary

that gains control of the firmware can modify the included device drivers to

alter sensor data or the time when it is published.

• Masquerading. The adversary can have a device that either pretends to be a

legitimate TSP, or creates multiple emulated or simulated TSPs, each called

a Sybil. The Sybil attack [37] will be successful if the system cannot detect

or prevent the creation of a Sybil.

• Communication Integrity Compromise. A man-in-the-middle can inject, mod-

ify, drop, or replay messages in transit between the TSP and the portal. A

successful attack on communication integrity can result in the publication of

false, corrupt or stale data.

3.3.2 Threats to the Mobile Proxy

The participant’s mobile device serves either as a forwarding proxy for raw data

originating from the TSP, or as a data aggregating proxy when processing the raw

data before sending it to the portal. A malicious participant may modify its mobile

proxy to compromise the integrity of published data. The proxy is not trusted by

the portal or the TSP in any role and poses the following threats to data integrity:

• Communications compromise. The threats posed by a compromised forward-

ing proxy are the same as threats to communication integrity between the

20

TSP and the portal. Addressing communication integrity threats simultane-

ously addresses threats from a malicious proxy.

• Malicious data aggregation. When a compromised mobile proxy functions

as a data aggregating proxy, it can fake the aggregate values, drop them, or

inject any new ones. In this scenario, the portal must be able to detect and

reject data from the malicious proxy.

3.3.3 Threats not Addressed

Although we address some of the most challenging threats to data integrity in

crowd-sourced sensing, the following threats, although important, have not been

addressed:

• Availability. A remote adversary may force the TSP or proxy to continuously

receive messages, depleting their battery [122]. Or the mobile proxy may drop

all communications between the TSP and the portal. Such forms of Denial

of Service (DoS) attacks are currently not addressed.

• Confidentiality. We primarily address data integrity in crowd-sourced sens-

ing, as such, we rely on other components to provide confidentiality. For

example, the channel between the TSP and the mobile proxy (see Figure

3.1) can be secured using Bluetooth’s security features.

• Physical Data Poisoning. A participating adversary may alter the very phe-

nomenon being sensed. For example, he could collude with others to drive

slowly, thus, depicting congestion. It is important to note that the TSP ne-

cessitates physical tampering of the phenomenon to publish fabricated data,

as opposed to simple software modification to do the same. We believe this

greatly raises the bar for data poisoning attacks.

21

• Hardware attacks on the TPM. Since the TPM is the root of trust for our

approach, we assume that it is tamper-proof as claimed, not compromised,

and functioning as expected. This is a reasonable assumption given that

simple yet effective hardware attacks on the TPM, like the timing and reset

attacks have already been addressed [13, 133]. Furthermore, the most recent

attack involving extraction of an obsolete TPM’s “burned-in” private key

took specialized skills, around six months, and costly equipment worth about

200,000 USD [129]!

3.4 THE TRUSTED PLATFORM MODULE

As we discuss in Section 3.5, the TPM is the root of trust for data authenticity and

platform integrity assurance provided by the TSP. Trust in the TPM stems from

internationally recognized common criteria standards [127]. The TPM is a tamper-

proof secure co-processor that enables trusted computing principles on commodity

computing platforms. It is housed on the host platform and provides tamper-proof

storage for cryptographic keying material, and platform configuration information.

Additionally, it can digitally sign and report the securely stored configuration

information, thus indirectly attesting to the integrity of the platform. Further,

since the digital signatures are computed using keys protected from extraction, any

signed information from the TPM can be considered authentic once the signature

is verified.

A TPM is associated with several credentials, each containing information re-

garding the TPM or its associated platform, and digitally signed by the entity

issuing the credentials. References to the various TPM credentials (in the form

of message digests) along with the public portion of the TPM’s RSA signing key

(AIKpub: Attestation Identity Key) are included in a final attestation identity

credential that is then signed by a trusted certificate authority. Once presented

to remote entities, the successful verification of the attestation identity credential

22

proves that the specified platform indeed contains a certified TPM and that any

digital signatures performed by that TPM (using AIKpriv) can be verified using

the included public signing key. Since the corresponding private key is securely

created, stored, and protected from extraction by the TPM itself, the TPM’s sig-

nature cannot be repudiated.

The TPM also provides load-time platform integrity verification via its platform

attestation feature. However, run-time changes to the platform cannot be directly

captured by the TPM. Section 3.5.2 discusses the design of our Trusted Sensing

Peripheral (TSP) that inherently resists run-time software attacks. Thus, trust in

the run-time state along with trust in the initial platform configuration transitively

induces trust in the load-time state of the platform, allowing the TSP to use the

TPM solely as a signing authority.

3.5 DESIGN

In this section, we describe the Trusted Sensing Peripheral (TSP) and the Secure

Tasking and data Aggregation Protocol (STAP).

3.5.1 Design Assumptions

We assume that the online portal has the TPM’s attestation identity credentials

that contain its public Attestation Identity Key AIKpub, used to verify the TPM’s

signature. For STAP, we assume a secure transmission channel (e.g. the Secure

Sockets Library (SSL)) between the proxy and the portal, and that the portal has

a strong pseudo-random number generator. Our protocol’s security depends on the

assumption that a malicious proxy cannot reliably predict the sequence of random

numbers generated by the portal.

23

3.5.2 Design Rationale

Designing a high-integrity sensing platform is not trivial. Especially, when the

platform can potentially be in the physical possession of an adversary. This, by-

definition, is the case with crowd-sourced sensing: participants carry mobile plat-

forms with built-in sensors that upload data to an online portal. Although most

participants may be honest, one can not ignore that malicious participants may

poison the data integrity.

At the least, the portal must be able to detect sensory data tampering, or

the sensing platform must be able to prevent it entirely. Since participation in

crowd-sourced sensing is voluntary, people may register at any time with private

heterogeneous sensing devices. Thus, the system must be able to detect fake

devices or prevent their participation.

Cryptographic techniques that detect data tampering across a communication

channel (e.g. message digests) work only if the communicating parties have a vested

interest in protecting the transmitted data. However, in crowd-sourced sensing,

one of the parties, namely the data producer, could very well be the adversary,

making it very hard for the portal to discover if fabricated data was being protected

in the first place.

The portal could compare multiple data values produced in the same region and

reject the outliers. However, as discussed later in Section 3.9, this method may be

effective at detecting outliers, but is counter to the objective of an adversary who

actually wants to avoid detection. Consider again, the example of an adversary

that emulates multiple distinct mobile devices and publishes GPS data to make a

quiet neighborhood street appear congested. This situation will hardly appear to

the system as outlying activity. Furthermore, since the portal cannot distinguish

between real and emulated platforms, this sort of software collusion attack using

multiple Sybil (or fake) identities will go undetected. Other issues with this ap-

proach are the need for redundant data sources in any region, and different outlier

24

detection mechanisms depending on the type of data being collected.

Consequently, our design takes the prevention approach. Here, the sensing

platform itself prevents any modification to the sensed data. We use a trusted

third-party housed on the platform to vouch for the integrity of all the software

running on it. If the portal cannot verify the presence of a trusted third-party

on the remote sensing platform, it can choose not to trust the data emanating

from it. Since the presence of the trusted third-party cannot be cloned or faked,

it is impossible for a sensing platform to appear trustworthy when its not. Our

trusted third-party housed on the sensing platform is the TPM. It forms the root of

trust for data and platform integrity assurances provided by the associated sensing

platform.

Recall that the sensing platform in crowd-sourced sensing systems is usually

the participant’s mobile device, which is assumed to already have existing sensing

capabilities (e.g. GPS, accelerometer, microphone). However, our approach was

to build a separate “closed box” high-integrity sensing platform we now call the

Trusted Sensing Peripheral (TSP). Several factors motivated this approach:

• As Garfinkel et al. stated in their work on a trusted virtualization platform

called Terra [50], “The security benefits of starting from scratch on a “closed

box” special-purpose platform can be significant”. They believed, like us,

that an opaque special-purpose platform can more easily protect the integrity

of its contents.

• Providing “closed box” semantics on most commodity mobile devices is not

possible due to the lack of required hardware support and effective protection

of software from run-time attacks. Terra [50] provides load-time application

integrity guarantees using the TPM, and strong isolation by running it inside

a virtual machine managed by a Trusted Virtual Machine Monitor. However,

we are not aware of any existing commodity mobile devices equipped with

25

TPM chips. Further, Terra does not protect software from run-time attacks

by malicious device drivers that have access to the DMA controller. Another

system proposed by McCune et al. [82], called Flicker, provides a secure

execution environment for a portion of an application’s logic. Besides the

need for a TPM, this approach also requires additional hardware support

(like the SKINIT instruction found on certain AMD processors [8], or the

GETSEC+SENTER instructions on certain Intel processors [63]) to setup

the secure execution environment. Flicker provides protection from DMA

attacks, and strong isolation by disabling all interrupts and debugging sup-

port. However, regardless of hardware support, certain practical limitations

remain. Flicker requires that the OS and all associated tasks be suspended

during the time the secure execution environment is active. Given the high

overhead of the SKINIT instruction and the required TPM operation on a

desktop (912.6 msec on a 2.2 GHz AMD Athlon 64-bit Dual Core processor),

it is safe to assume, for now at least, that the situation will be worse on a

mobile platform with users frustratingly noticing their mobile device freeze

periodically to allow secure sensing activities to take place.

• Existing mobile devices with sensing capabilities (e.g. smart phones) are

as exposed and vulnerable as today’s desktops. Our always-on Internet-

connected smart phones are already at risk of being usurped by active botnets

[72]. A “closed box” sensing platform, such as one without a connection

to the Internet, will make remote attacks on sensory data integrity more

challenging.

• Decoupling trustworthy sensing from trusted computing will make trustwor-

thy sensing less invasive and encourage its adoption. Features provided by

trusted computing, like TPM-based platform attestation, have been the topic

of much debate. Some like Ross Anderson and Bruce Schneier have been

26

vocal critics and consider it to be an invasive technology that encourages

software monopolies, facilitates DRM, and compromises privacy [23, 109].

For example, since it is necessary to verify the integrity of all software com-

ponents on a platform to provide integrity assurances about a single one

[110], the verifier would effectively know all about the platform’s OS and ap-

plication configuration. Thus, the TPM’s platform attestation feature may

inadvertently pose a threat to privacy.

• A separate trustworthy sensing device, like our TSP, could expand sensing

capabilities. Mobile devices, like smart phones are equipped with only those

sensors that help their functionality (e.g. GPS, microphone, accelerometer).

However, some crowd-sourced sensing applications may require more special-

ized sensors, such as smog, dust, or chemical pollutant sensors to measure air

quality. Furthermore, even mobile devices without any sensing capabilities

could help produce trustworthy sensor data.

3.5.3 TSP Architecture

Figure 3.1 shows the TSP architecture, consisting of a TPM-capable hardware plat-

form with attached sensors. A Bluetooth module allows the TSP to communicate

with an array of mobile devices supporting the technology.

We achieve “closed-box” semantics on the TSP by building it using a special-

purpose Modified Harvard-architecture sensing platform, and permanently dis-

abling features that may compromise its software integrity. It is widely known,

that run-time attacks exploiting memory-related vulnerabilities with the intent of

modifying program instructions, have little or no chance of success on such plat-

forms [47]. Such platforms provide strong physical isolation between executable

instructions in program memory, and information in data memory. The program

memory on such devices is read-only, and the program counter is not allowed to

27

refer to addresses in data memory. Consequently, program instructions can neither

be changed, nor be executed from data memory at run-time. All usual methods

to reprogram the TSP — physical or remote — are disabled permanently. Normal

communication methods, like the radio, are also disabled. The only connection

between the TSP and the outside world is via a Bluetooth channel. To enable

genuine upgrades, we use the existing over-the-air self-reprogramming mechanism

supported by the TSP. However, instead of receiving the firmware image over the

radio channel, we receive it over Bluetooth. These protections are sufficient to

prevent the TSP from a recent and only known permanent code injection attack

on a Modified Harvard-architecture platform [47].

Given the above protections in place, a physical or remote adversary will not

be able to change the pre-programmed firmware on the TSP. Consequently, the

on-board TPM need only attest to a firmware version identifier on the device when

challenged by a remote entity. Any data sensed by the TSP is signed by the TPM

to guarantee its authenticity and integrity. Trust in the data is induced via trust

in the platform integrity.

28

F
ig

u
re

3.
2:

S
ec

u
re

T
as

k
in

g
an

d
D

at
a

A
gg

re
ga

ti
on

P
ro

to
co

l
(S

T
A

P
)

29

3.5.4 Secure Tasking and Aggregation

Secure tasking involves verifying that the given platform has a TPM (see Sec-

tion 3.4), then challenging it to produce a TPM attestation of the platform’s

firmware, then verifying the attestation is authentic and correctly represents the

TSP firmware (e.g. comparing the respective message digests), and finally schedul-

ing the TSP to collect, sign, and send data from a subset of its sensors at regular

intervals.

To save energy required for data transmissions and to help reduce processing

overhead at the portal, the data producer’s mobile device (the mobile proxy) may

choose to aggregate the raw data from the TSP before forwarding it to the portal.

For example, instead of sending raw GPS coordinates from the TSP every 30

seconds, the mobile proxy may send a coarser region covered by those coordinates

every five minutes.

We have developed STAP (Figure 3.2), a protocol that allows the portal to

detect if the untrusted mobile proxy is fabricating the aggregates, as opposed to

computing them using the TSP’s signed raw data. To detect a lying proxy, the

portal must know the aggregation function in advance. This function is therefore

the generation and verification function in the trust-but-verify approach. Then,

during the course of receiving data, the portal pseudo-randomly requests the mobile

proxy for the latest window of signed raw data used to compute the just received

aggregate (the proxy needs to buffer this data). When the portal receives the raw

data from the mobile proxy, it verifies that the TSP signed them, then recomputes

the aggregate using the aggregation function, and finally compares the computed

aggregate with the one already sent. If the comparison fails, the portal can choose

to reject further transmissions from this lying proxy. This is similar to the concept

of bit-commitment introduced by Chaum et al. [27] where one commits to a value

before it is checked for correctness.

The pseudo-random challenge forces the mobile proxy to guess when it is safe

30

to fabricate an aggregate. Eventually, a lying proxy will guess wrong and get

caught. Lying more only causes the proxy to be detected faster and lying less only

delays that outcome. The following equation represents the expected number of

aggregates E(n) a portal accepts, when challenging aggregates with probability q,

before detecting a proxy lying with probability p.

E(n) =
∞∑
n=1

n× (1− pq)n−1 × pq (3.1)

We evaluate STAP in Section 5.9 and show that the experimental results closely

match the analytical one above.

3.6 IMPLEMENTATION

In this section, we discuss our TSP prototype and the implementation of STAP.

3.6.1 Trusted Sensing Peripheral (TSP)

We use the secFleck [60] as the foundation of the TSP. The secFleck is the portion

of the TSP consisting of the Atmel TPM chip (based on v1.2 of the Trusted

Computing Group specification [132]), and the Fleck sensor board (see Figure

3.3).

Figure 3.3: Trusted Sensing Peripheral with a Bluetooth and GPS module.

The Fleck is a sensing platform with 8 KB of memory and an 8 MHz Atmega

micro controller [117]. It houses the TPM module, and is extensible with various

31

sensors. The TSP firmware, including the FleckOS, sensor device drivers, and our

application, runs on the Fleck hardware.

Figure 3.3 shows the TSP. Attached to it, is a Parani-ESD Bluetooth module.

The mobile proxy application communicates with the TSP using a local, inter-

mediary Python relay service called foslisten. foslisten communicates locally

using TCP sockets, while with the TSP, it uses a serial-over-Bluetooth channel

(Figure 3.4).

Figure 3.4: Data producers on the mobile proxy communicate with the TSP via a

Python relay service called ’foslisten’.

3.6.2 Online Portal

The online portal is responsible for tasking the TSP, verifying the TSP’s platform

integrity and the integrity of any data received from it, requesting the mobile proxy

to aggregate data if necessary, and pseudo-randomly challenging the mobile proxy

to prove its trustworthiness when aggregated data is received. The portal runs

as a standard multi-threaded TCP server on a 2.2 GHz Intel(R) Core(TM)2 Duo

platform with 1.9 GB of memory running Linux kernel version 2.6.32.10.

32

3.6.3 Mobile Proxy

The service running on the mobile proxy is responsible for receiving a task from the

portal, in turn tasking the TSP via the Bluetooth channel using our custom RPC

protocol, retrieving data from the TSP, and forwarding that data to the portal.

The mobile proxy is a Nokia N800 tablet with 128 MB of memory running Linux

kernel version 2.6.21 on an ARMv6 processor. Although we use the N800, a widely

popular tablet, our work is applicable to any smart phone or tablet device.

3.6.4 Secure Tasking and Aggregation

The details of STAP are shown in Figure 3.2. Here, we limit our discussion to

how the TSP is tasked. The portal first sends a task description [S, c, t, f] to the

mobile proxy, where, S is the set of sensors to collect data from, c is the number

of data samples to collect, and t is the time (in seconds) within which to collect

the c samples (sampling interval is thus t/c seconds). S is expressed using a 16-bit

mask, allowing sixteen sensors to be tasked simultaneously with the same sampling

interval. Each set of data samples are reported in an attested response message

signed using AIKpriv (see Figure 3.4), and can be verified by the portal using

AIKpub. A mobile proxy modifying the task description will be detected when the

portal verifies the one echoed back by the TSP in the first attested response.

3.7 EVALUATION

We first evaluate the performance of the TSP and then evaluate STAP in Section

3.7.2.

3.7.1 TSP Performance

We analyze the performance of the TSP in terms of time and energy required to

perform and transmit data attestations. Then, we discuss other costs involved in

33

building the TSP: code size, memory usage, and monetary cost. The TSP runs

on three 1.5 V batteries with a 2500 mAh capacity each and is configured with

two sensors: an on-board temperature sensor, and an attached GPS sensor (Figure

3.3).

Timing Measurements

The TSP is made to repeatedly perform and return forty attestations, each over a

set of temperature data samples varying in size from 2 to 92 bytes at 10 byte inter-

vals. Average time spent performing attestations, along with the 95% confidence

interval, is shown in Table 3.1. The small confidence interval due to the dominant

RSA signature operation that is always performed over a fixed size SHA-1 digest

of the data. Table 3.1 also shows the average transmission time of the signed data

samples. As we can see, the TSP can only sample, attest, and report data at

intervals greater than ≈ 2 seconds. This lower limit on sampling and reporting is

more than acceptable for existing crowd-sourced sensing systems, most of which,

require data samples less frequently than that [62, 106, 42, 9].

Task Compute Time Transmit Time

(sec) (sec)

Single

Attestation 1.72 (± 0.01) 0.3 (± 0.1)

Table 3.1: Average time required to perform and transmit an attestation.

Energy Measurements

We measured the TSP’s current draw in different energy states using an oscilloscope

with an internal resistance of 10MΩ across a 1Ω resistor placed in series with the

TSP. Table 3.2 shows the average current drawn by the TSP while it was idle,

performing attestations, and performing transmissions.

34

Energy State Current Draw

Idle 80 µA

Attesting 50 mA

Transmitting 42 mA

Table 3.2: Average current drawn in various TSP energy states.

Using the timing and current draw measurements, we computed the energy

consumed by the TSP while collecting, attesting and transmitting a 2 byte sample

of data at various intervals. Figure 3.5(b) compares energy consumption of the

TSP with the TPM, without any security, and when the TPM’s operations are

performed in software [60]. Hardware attestations end up being half as expensive

as those performed in software, because, although they draw more current, they

can be computed much faster. However, the TPM requires three times more energy

than if there were no security at all.

We also computed an estimate of the TSP’s battery life. Figure 3.5(a) shows

that when tasked with sampling, attesting, and transmitting a 2 byte sample every

30 seconds and remaining idle in-between, the TSP can achieve a battery life of

over 80 days. This is quite sufficient for crowd-sourced sensing, where participants

will carry and eventually recharge these platforms. Also, notice that battery life

is nearly double than when all security is in software.

Other Costs

Figure 3.6 compares compiled code sizes of various software components running on

the TSP. The code size of our application is smaller than both the TPM library and

the FleckOS. Memory (RAM) used by the firmware is approximately 4.2 KBytes,

which is a little over half the available memory (8 KBytes) on the current version

of the Fleck. Monetary costs involved are currently high: the cost of the TSP

hardware is approximately 300 USD. The TPM chip itself is inexpensive, about 6

35

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

X: 30
Y: 80.19

Sampling Interval(s)

Ba
tte

ry
 L

ife
 (D

ay
s)

No Security
Software RSA
TPM RSA

(a) TSP battery life.

No Security Fleck Software RSA Fleck TPM RSA
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

En
er

gy
 U

sa
ge

 (J
ou

le
s/

Sa
m

pl
e

Attestation
Transmission

(b) TSP energy usage.

Figure 3.5: Battery life and energy usage of the TSP.

USD when purchased in large quantities (≥ 1000).These monetary costs are higher

due to the limited scale at which our TSP is currently produced; with economies

of scale we believe that the cost could be brought down to lower than 50 USD.

3.7.2 Secure Tasking and Aggregation Protocol

We conducted experiments to answer the following questions about our protocol:

1) How many fabricated aggregate values are accepted by the portal before a lying

mobile proxy is detected? 2) How long does it take for the portal to find a lying

36

Figure 3.6: Compiled code size comparison of various software components on the

TSP.

proxy? and, 3) What is the overhead of detection?

In each experiment, the mobile proxy is configured to randomly fabricate (or

lie about) an aggregate with probability ranging between 1/10 to 1/2 (or 10%

to 50% of aggregates). Here, fabrication involves adding a random number be-

tween 1 and 10 to the result of the aggregation function. The online portal then

pseudo-randomly challenges the integrity of a received aggregate with the same

probabilities. Aggregations are performed on every 10 two-byte samples of tem-

perature data. The aggregation function f performed by the proxy is a mean of

those samples. An experiment continues until the portal detects the first fabri-

cated aggregate value. When necessary for clarity, we omit data points that don’t

add significantly to the information conveyed by the graphs.

Figure 3.7(a) shows that the portal can quickly and efficiently detect a lying

proxy. While pseudo-randomly challenging only 20% of the aggregates, the mali-

cious proxy is detected within the first six fabrications received — no matter how

much it lies. The advantage of challenging more than 20% of the aggregates is not

significant, thus, this threshold reasonably trades off the integrity of aggregates

37

(a) Damage to data integrity

(b) Overhead of detection (c) Aggregates accepted before detection

Figure 3.7: Performance of the secure aggregation protocol STAP

with the overhead of challenging.

Figure 3.7(c) shows how long it takes the portal to detect the malicious proxy in

terms of the number of aggregates (false or otherwise) accepted before detection.

Not surprisingly, the less a proxy lies the longer it takes to detect it. We also

plotted Equation (5.1) with the portal’s checking probability q set to 1/5 (or 20%

of the aggregates). It can be seen that the analytical plot is within the confidence

intervals of the experimental one. Notice also, the large drop in aggregates accepted

when challenging 20%, rather than 10% of them.

Figure 3.7(b) shows the detection overhead in terms of the number of challenges

issued before detecting a lying proxy. Surprisingly, the overhead largely depends

38

only on how often the proxy lies. Figure 3.7(c) provides an intuitive explanation:

although the number of aggregates accepted before detection varies significantly,

the number of challenges issued does not. This result works in favor of the portal,

which can now minimize the number of challenges based on factors like reducing

the number of fabrications accepted.

3.8 THREAT ANALYSIS

We now revisit our threat model and describe how our system addresses those

threats to the TSP and mobile proxy.

3.8.1 Threats to the TSP

A majority of the threats are addressed as a consequence of the TPM’s special

capabilities, namely, a sealed private key and the property of being infeasible to

replicate.

• Software modification. Such attacks are mitigated by building the TSP using

a modified harvard-architecture based platform that provides strict isolation

between program and data memory, and permanently disabling all methods

that can possibly alter the TSP’s firmware.

• Masquerading. The TPM’s sealed private key ties the identity of the TSP

(represented by that key) with the hardware platform. Since the TPM cannot

be cloned, and its private key cannot be extracted, the adversary has no way

to masquerade as a TSP.

• Communications Compromise. The portal can detect modification or in-

jection of data because an adversary without the TSP cannot fabricate its

signatures. Replay attacks can be detected because each data sample gener-

ated by the TSP has an incremental sequence number.

39

3.8.2 Threats to the Mobile Proxy

The portal uses STAP to detect a mobile proxy fabricating aggregates. The key

idea is that a mobile proxy commits to the aggregate value by the very act of

sending it to the portal. The portal then pseudo-randomly verifies the integrity of

that commitment. A lying mobile proxy may be able to publish some fabricated

aggregates (see Figure 3.7(a)), but will eventually get caught.

3.9 RELATED WORK

Existing research on crowd-sourced sensing does not address the data integrity

problem the way we define it, namely, “How can a data portal — receiving data

from sensors not under its control — trust that the data is a true representation

of the real-world phenomenon being sensed?”.

Research on traditional sensing, however, does suggest some approaches that

might be adapted to solving the above problem. For example, a reputation-based

framework implemented at the portal could identify and ignore data from sources

with a low reputation [48]. A source is assigned a low reputation as long as it

generates outlying data samples when compared to others in its neighborhood. The

reputation is actually assigned by neighboring sensors that also sense similar data.

Even though this network architecture may not be practical for highly mobile crowd

sensors, it also does not provide protection from Sybil attacks, where an adversary

could create any number of virtual sources and use them to artificially raise a

given source’s reputation. A reputation based system will also be more effective in

detecting faulty sources than malicious ones, reason being, malicious sources will

try to avoid detection by publishing fabricated, but not necessarily outlying data

[48]. Among other issues, reputation based frameworks require redundant sources

of data to detect outliers, and are specific to the type of data being collected.

Another approach, also from traditional sensing, involves filtering fabricated

40

or anomalous data that is injected into the sensor network [150]. Data that at

least t + 1 local sensors don’t agree on, or data coming from unauthentic sen-

sors is considered fabricated. The system is thus resilient to adversaries that have

compromised at most t sensor nodes. Since each sensor in the network can be

authenticated, the sensor network is resilient to Sybil attacks. However, the as-

sumption is that each sensor node already shares a key with the authenticator (the

base station). This assumption might be realistic for traditional sensor networks,

but is not realistic for crowd-sourced sensing systems where the data portals and

data producers (participants from the crowd) are different autonomous entities.

It would be unreasonable to expect that every potential data portal has a preex-

isting secret with every potential data producer. The Sybil attack, could thus be

launched by a data producer during the time a shared secret is established with

a new data portal. Another disadvantage is that software attacks, where data is

modified after being sensed, can be detected only when less than t+ 1 nodes have

been compromised.

An orthogonal approach, as opposed to those discussed above, and closer to

what is presented in this chapter, is for data portals to use systems like Pioneer or

SWATT (SoftWare-based ATTestation) to externally verify the code executing on

a remote data producer’s platform [113, 114]. With assurance in the producer’s

sensing platform, the portal will be inclined to trust data from it. Unlike our

trusted-hardware approach, both SWATT and Pioneer are software-based systems

that challenge the remote platform to compute a digest of its memory contents.

The digest is computed by traversing the memory in a pseudo-random fashion

as determined by the random challenge. The challenger is expected to know the

memory contents of the remote platform beforehand and can therefore compute

the correct digest independently for verification later in the protocol. A remote

platform could fool the challenger by separately storing the original contents of

the modified portions of memory, allowing it to still provide the correct digest.

41

However, since the traversal is pseudo-random, the malicious platform cannot know

before hand the order in which the memory will be checked. As a result, the

attacker will have to check each memory access to see if the addresses matches one

of the modified ones. This extra check will cause the digest computation operation

to take longer than expected, causing the challenger to become suspicious. Notice

though, that both SWATT and Pioneer cannot prevent a Sybil attack from an

adversary that has abundant computational resources. The attacker could simulate

the remote platform on more powerful hardware while still meeting the expected

response time. Since the response time of the remote platform is an estimate

based on the hardware configuration and the expected communication latency,

SWATT and Pioneer only provide a probabilistic guarantee of the remote platform’s

integrity. Estimating response times may itself be a daunting task.

Our protocol is inspired by an approach in traditional sensing called Secure

Information Aggregation (SIA) [103]. However, unlike our approach, SIA assumes

that the sensors are trustworthy and does not provide an implementation of the

protocols. Our framework also makes it easy to incorporate other SIA algorithms

that are more suitable for the respective aggregation function.

3.10 DISCUSSION

We recognize the use of the TPM cannot protect against all failure modes. For

example, sensor measurements may be inherently corrupt, sensors maybe damaged,

or a sensor’s environment may be doctored. It is also likely that not every user

has a Trusted Sensing Peripheral. In this case, the crowd-sourced sensing system

could still collect data from untrusted sensing platforms, but then use the data

from trusted peripherals to calibrate or validate the untrusted data. We plan to

address a solution along these lines in future work.

The types of aggregation functions addressed in this chapter, work on discrete

42

windows of data. Thus, calculating metrics like the median would require a differ-

ent aggregation protocol. Nonetheless, such a protocol could easily be integrated

within our current framework.

The TSP may duplicate some functionality of in-built smart phone sensors such

as audio and GPS, however, it also enables the addition of a wide range of new

sensors such as CO, CO2, humidity, temperature, seismic, and medical sensors.

For example, carbon monoxide studies in Ghana, Accra used an additional device

attached to the phone [97]. Furthermore, the TSP can be connected to a legacy

mobile device, as such it is possible to deploy a trustworthy crowd-sourced sensing

application without the cooperation of smart phone OEMs such as Apple or Nokia.

3.11 CONCLUSION

This chapter presented the design and implementation of a Trusted Sensing Pe-

ripheral (TSP) to provide data authenticity and integrity for crowd-sourced sensing

systems. The TSP has built-in sensors, and a Trusted Platform Module (TPM)

that helps it resist software and Sybil attacks to its platform. The TPM attests

to the integrity of published data at the source, and this attestation is verified at

a remote server. The TSP is energy-efficient, with a battery life of over 80 days

when collecting a temperature sample every 30 seconds.

Our secure data aggregation protocol STAP allows an untrusted intermediate

mobile proxy to aggregate the TSP’s raw signed sensor readings, while allowing

the data portal to detect a malicious proxy that fabricates those aggregates. The

portal can detect a lying proxy with very little overhead, and can do so within the

first six fabricated aggregates received.

43

Chapter 4

HIGH-INTEGRITY PRIVACY-PRESERVING CROWD-SOURCED

SENSING

Integrity of the received data and the privacy of the data sources remain first

order concerns for crowd-sourced sensing systems. Unfortunately, people will be

reluctant to volunteer sensitive information (e.g. location, health statistics) if they

cannot trust the system to protect their privacy. Conversely, if the volunteered

information is first modified to protect privacy, then the system will be reluctant

to trust that modification without proof of its integrity.

Consequently, integrity and privacy compete with each other. If the collected

data has been previously transformed to preserve privacy (e.g. mixed, aggregated),

then a data consumer cannot determine the transformation’s integrity unless the

raw data used as input is presented as well. However, if the raw data is presented,

then the privacy of the data sources gets compromised. This chapter describes how

the trust-but-verify approach can be used to provide simultaneous data integrity

and privacy guarantees without significantly compromising either.

4.1 APPLYING THE TRUST-BUT-VERIFY APPROACH

In the previous chapter, we described a verification function that enabled crowd-

sourced sensing applications to determine the integrity of data received from in-

dividual sources. Recall however, that the information collected by the trusted

sensing peripheral was sent to the consumer as-is, implying that the data sources

had no privacy.

44

In this chapter, we develop a verification function that in addition to guaran-

teeing data integrity preserves privacy as well. This is done by involving a trusted

intermediary that aggregates the data from multiple volunteers in a way that pre-

serves privacy. In this case, the generation function is the aggregation performed by

this intermediary and the data to verify is the output of this aggregation function.

The verification function, then, must allow the consumer to check the integrity

of this aggregate without needing the original data used to compute it. The key

idea is to use a homomorphic commitment scheme [98] that allows the consumer

to compute the same aggregation function over commitments to the original data.

The result is then checked against a commitment to the initially received aggre-

gate. A volunteer’s data remains private because the respective commitments do

not reveal any information about the data.

4.2 CONTRIBUTIONS

This chapter describes LocationProof, a protocol that enables a crowd-sourced sens-

ing application to establish the integrity of location-based data while preserving

the privacy of those who collected that data. The focus is mainly on location-based

information since location privacy has become a fundamental concern in crowd-

sourced sensing applications [43, 61, 49, 71]. It has been shown that anonymizing

an individual’s location traces are not enough to preserve privacy since they can

be used to infer where a person lives and works [73, 148, 70, 146]. Moreover, Mon-

tjoye et al. [32] showed that among half a million anonymized traces at cell-tower

granularity, just four spatio-temporal points were enough to uniquely identify the

traces of 95% of individuals.

45

4.3 SYSTEM MODEL

The system model assumes a set of trusted data sources that collect and forward

sensory data to an aggregator, which aggregates the received data, and finally

forwards the result to a data consumer. The goal is to assure the data consumer

that the proxy indeed computed the expected aggregation function using data

from expected sources (integrity) without providing the consumer with that data

(privacy).

Much of the existing work on crowd-sourced sensing, with a focus on integrity

and privacy, adheres to this model. Examples include PoolView [49], which intro-

duces the personal privacy firewall to perturb a user’s raw data before publishing it

to an aggregation service; DietSense [106], which provides private storage to a user

where she can edit the images collected from her phone before sharing it further,

AnonySense [71], which uses a trusted server to mix data from at least k clients

to provide k-anonymity; and our earlier work on the design and implementation

of a Trusted Sensing Peripheral (TSP) that produces and publishes trustworthy

sensory information to a data portal via the user’s personal mobile device [38].

Figure 4.1 describes the system model more formally. The crowd-sourced sens-

ing system involves a set of sources S = {s1, s2, ..., sn} contributing data to an

aggregator A, which aggregates the received data and forwards it to a consumer

C. The data for a source i includes a tuple (xij, yij, dij) consisting of the source’s lo-

cation coordinate (x, y) and associated sensory data d (e.g. temperature) during in-

terval j. The aggregation function computed by A is the mean (x̄j, ȳj, d̄j) of respec-

tive tuple elements contributed by groups of at least k users in each interval j (note

that n ≥ k). The sources are assumed to be contributing data as part of a cam-

paign that defines the anonymity parameter k, the data collection intervals j, the

type of data d to collect, and a rectangular region R = [(xmin, ymin), (xmax, ymax)]

46

to collect the data in. The goal is to enable C to validate the result of the ag-

gregation that A is performing, without learning the data that was aggregated.

s1

s2

s n

A C
(xj , yj , d j)(x2j , y2j , d 2j)

(x1j , y1j , d1j)

Figure 4.1: System model for privacy-preserving high-integrity crowd-sourced sens-

ing

4.4 BACKGROUND

The privacy LocationProof provides depends on several fundamental concepts: k-

anonymity, the Hilbert Cloak [52], the Pedersen homomorphic commitment scheme

[98], and the Trusted Sensing Peripheral (Chapter 3).

4.4.1 k-anonymity

k-anonymity is a concept first introduced by Samarati and Sweeny [111] to protect

the privacy of individuals when disclosing person-specific information (e.g. medical

data for research purposes). Such information is assumed to be released in the

form of a table where each row contains the data pertaining to one individual.

The basic idea is that any person’s record must be made indistinguishable from

the records of at least k − 1 others by suppressing or generalization the values

of individual fields in the released data set. Thus, given only the released data,

the probability that a given record belongs to a particular individual is at most

47

1/k. Gruteser and Grunwald [57] applied this idea towards anonymous usage of

location-based services. The goal is to ensure that information requested for any

region contains at least k requestors. Such a region is called a location cloak and

it mitigates the severity of inference attacks : performing reverse-location lookups

on an individual’s location traces to re-identify them. Since k-anonymity ensures

that any trace contains at least k people, a reverse-lookup reveals information that

could correspond to any of the k individuals.

4.4.2 Hilbert Cloak: k-anonymous Location Cloaking

There are many strategies for computing a location cloak in a way that preserves

k-anonymity. Consider our system model, where data sources are periodically

collecting location-based information in a region R. In this scenario, we could

achieve k-anonymity by computing a cloak that includes all users in the region as

long as there are more than k of them. However, this only gives us one aggregated

data point per interval for the entire region R regardless of its size. For more fine-

grained data, it is desirable to create multiple location cloaks, each of which, are

large enough to preserve k-anonymity. Gkoulalas et al. [52] provide an exhaustive

analysis of the various strategies that can be used. One of the more efficient and

secure algorithms is the Hilbert Cloak by Kalnis et al. [70]. The Hilbert Cloak

translates a two-dimensional location coordinate into a one-dimensional distance

on the Hilbert space filling curve. It has been shown that points close-by in 2D

space are also close together on the Hilbert curve with high probability [88].

One can get an intuitive understanding of this result from Figure 4.2, which

shows how points on the Hilbert curve represent points in 2D-space. Once the

aggregator A has converted each location into a point on the Hilbert curve, it

can sort those points and group them sequentially into buckets containing at least

k sources each. Then, the region occupied by each group of k or more sources

represents the group’s location cloak.

48

Figure 4.2: The Hilbert curve (left: 4× 4, right: 8× 8). Source: Kalnis et al. 2007

[70]

4.4.3 Homomorphic Commitment Scheme

As depicted by the system model in Section 4.3, the aggregator A computes the

mean location (representing the cloak) for each group of k data sources and sends

it to consumer C. C may then request A to prove that the mean was computed

correctly using only the locations from sources in S. This work describes a protocol

that allows A to do just that but without ever revealing the sensitive data source

locations that were used as input. The protocol employs Pedersen’s homomorphic

commitment scheme [98] as a fundamental building block.

A commitment is a function of a value that does not reveal anything about

that value. For example, E(v, l) is a commitment to the value v using key l. The

commitment can later be verified when the actual value v and key l are revealed.

Verification involves computing the commitment function over the revealed value

and comparing with the previously received commitment. Pedersen’s commitment

scheme has one other property: it is additively homomorphic, that is, it allows

computing over commitments to values v1 and v2 using an operation � such that

E(v1, l1)� E(v2, l2) = E(v1 + v2, l1 + l2).

49

In Pedersen’s scheme:

E(v, l) = gvhl

and operation � is multiplication. Here, g, h are publicly known elements of a

group Gq and v, l are elements of Zq = {0, 1, ..., q − 1}. Given two large primes p

and q where q divides p− 1, the group Gq is a subgroup of Zp such that

a ∈ Gq ⇐⇒ aq = 1 and a ∈ Zp

Notice that any element of Gq (except 1) generates the group and thus, for any

two elements a, b ∈ Gq the discrete logarithm logb(a) is defined. The assumption

is that given a, b ∈ Gq, finding logb(a) is computationally intractable.

4.4.4 Trusted Sensing Peripheral (TSP)

Pedersen’s additive homomorphic commitment scheme allows C to check if A is

correctly aggregating the data. However, this still does not address the problem

of how C can determine that the location-based information collected by the data

sources accurately reflects their environment. Malicious sources could easily fab-

ricate the location-based data without C knowing. In this work, we assume that

either the sources in S are implicitly trusted, or use TSPs to perform the sensing.

When TSPs are used, the sources could prove the integrity of the platform using

the simple method described in Section 4.6. This way C would know that the data

came from a trustworthy source, and along with A’s proof that it was processed

correctly. We will see in Section 4.5 that to preserve privacy a TSP must prove the

integrity of its platform while remaining anonymous. It can do so using an anony-

mous signature scheme called Direct Anonymous Attestation [22] supported by its

Trusted Platform Module [134] (the embedded secure co-processor that forms the

root-of-trust for the TSP).

50

4.5 THREAT MODEL

Our protocol is designed to prevent a malicious C from compromising a source’s

location privacy, and prevent a malicious A from either injecting fabricated data

or computing an aggregation function other than the mean. Since data consumer

C has a vested interest in the integrity of the received information, it is assumed

to be an adversary of privacy, but not of integrity. Thus, given any locally avail-

able protocol state information and the aggregated data from A, we would like to

prevent C from recovering a source’s raw data, or hone in on its location. C may

narrow down a source’s location using side-channel information it may already

know about a particular source. Consider the intersection attack [70, 34] where

C knows that a particular source si participates in data collection and that si is

in some general area A at time t. Now, if at the same time, C discovers another

area A′ where si is, then the intersection of A and A′ reveals a smaller area con-

taining si. These attacks succeed even if areas A and A′ preserve k-anonymity.

The root cause is a lack of strong initial anonymity: notice that the consumer C is

able to link two physical regions because they are associated with some identifying

information about source si first revealed by the application itself. Such identi-

fying information could include user IDs used during a registration phase, or IP

addresses that remain the same across multiple data submissions. Thus, keeping

a source anonymous during all steps of the LocationProof protocol is critical to

preserving data source privacy.

The privacy proxy A is considered to be an adversary of integrity, but not of

privacy. A is not considered an adversary of privacy because we assume that A is

either controlled by the sources [49] or is implicitly trusted by them to protect their

privacy [85, 71]. However, now, C would like to know that the data it is interested

in, is being processed correctly. Thus, from C’s perspective A is considered an

adversary of integrity. An implication of the above adversarial model is that A

51

A

A'

si

Existing estimate
for location of si

New estimate

Figure 4.3: The intersection attack: given some previous estimate of a source si’s

location and any new estimate, the intersection of the two reveals a finer estimate

of si’s location.

and C do not collude in any way.

We do not consider threats from eavesdropping adversaries since standard net-

work security protocols, like TLS, can easily be used to combat them. We also do

not consider situations in which A, C, and S do not interact sincerely, implying

that neither side suppresses a response expected by the other. Further, we assume

S is trusted; either implicitly or by the use of a Trusted Sensing Peripheral as de-

scribed in Chapter 3, and that its origin is anonymized when communicating with

C via a mix network like Tor [35]. Sources must also be capable of performing

anonymous signatures like those described in group signature schemes [28, 21] or

use Direct Anonymous Attestation [22] when TSPs are employed for data sensing.

4.6 THE PROTOCOL

As shown in Figure 4.1, C receives the means (x̄j, ȳj, d̄j) of data collected by sources

S, via A. In each interval j, C can choose to accept the aggregated data as-is, or

challenge A to prove its integrity.

This challenge message marks the beginning of the LocationProof protocol.

52

LocationProof enables clients to send a response that allows C to determine if

the means were computed correctly, while not revealing anything about the in-

puts used to compute them. More specifically, each source si sends homomorphic

commitments to functions of its inputs. Then, C computes commitments to the

initially received means, and checks if they equal to the means computed using

commitments from the data sources. For simplicity, Section 4.6.2 first explains

the protocol using only k data sources, implying that data from all k sources is

aggregated in each interval. Later, in Section 4.6.3, we elaborate on how the pro-

tocol can be modified to provide integrity guarantees for data collected from n ≥ k

sources.

4.6.1 Requirements

The following is required from the LocationProof protocol:

1. The data consumer is never provided with the raw data (xij, yij, dij). This

is the basic privacy requirement.

2. The data consumer should not have any identifying information about the

data sources. Otherwise, the consumer could execute an intersection attack

to narrow down the location of a source.

3. The data consumer should be able to determine:

• that the inputs used to compute the means were provided by sources in

S

• that indeed the means as opposed to any other functions were computed

on those inputs.

53

si A C

interval j:

sense xij

si → A: xij

b = xij xj =
∑

1≤i≤k xij

A→ C: xj

x̄j = xj/k

interval j + 1:

sense xi(j+1)

si → A: xi(j+1)

b = xi(j+1) xj+1 =
∑

1≤i≤k xi(j+1)

...

Table 4.1: Normal operation: sources in S collect data and send it to A. A

aggregates the data and forwards the result to C. Please note that protocol steps

below occur at a later time than those above. The notation e1 → e2 : m implies

that entity e1 sends message m to entity e2.

4.6.2 With k Data Sources

We assume in this section that the number of data sources n = k. This allows us

to defer the discussion of how n users are split up into groups of k for preserving

k-anonymity. Also, we focus on verifying the integrity of one element, say xij, from

the tuple of data collected by each source. The same verification process must be

repeated for each tuple element.

Table 4.1 describes the “normal operation” of a data source si, the privacy

proxy A, and data consumer C. Here, normal operation represents the activities

of all entities in intervals where C does not challenge A to prove the integrity of

the aggregated data. After collecting data, a source si buffers that data for one

54

additional interval. As shown in Table 4.2, this is required because the sources

learn about C’s challenge for data sent in interval j during interval j + 1. Thus,

the sources must be prepared to prove the integrity of data they collected in the

last interval. On receiving each source’s data, A sums them all and sends the

total to C. C can then use the sum to compute the mean x̄j. The reason that A

sends the sum (an integer) rather than the mean (possibly non-integer) is to avoid

passing around fractional numbers: numbers that cannot be committed to under

the Pedersen scheme [98] used in our integrity verification algorithm.

We now discuss the privacy-preserving data verification function at the heart

of LocationProof. Let’s say data consumer C challenges A during some interval

j. In turn, A informs all the sources to prepare a response for data collected in

interval j after it receives their data for interval j+ 1. As shown in Table 4.2, each

source responds to A with a random number lij, a commitment E(xij, lij), and an

anonymous signature σij over the commitment E(xij, lij) to xij.

The random number lij serves as a key to the commitment scheme for source

si during interval j. Also, the anonymous signature σij is obtained by comput-

ing Sign(gpk, gsk[i], E(xij, lij)). Here, Sign represents the signature computation

function of a group signature scheme [21, 22], gpk the group’s public key, and gsk[i]

the corresponding secret key for source i. A group signature scheme preserves the

anonymity of signer by not revealing the specific group member that created the

signature. A signature can be verified using Verify(gpk, E(xij, lij), σij). If veri-

fication succeeds, then the verifier learns that someone in the group created the

signature, but not who in particular.

A then sums up the keys and sends the result lj along with all the commitments

and signatures to C. Here, lj represents C’s key to the commitment scheme. C

then verifies all the signatures, computes a commitment a1 = E(xj, lj) to the sum

xj, a commitment a2 = E(x1j, l1j)� . . .�E(xkj, lkj) using the commitments from

each source, and checks if a1
?
= a2. If this check fails or any of the signatures can’t

55

be validated, then the consumer rejects the data xj.

56

s i
A

C

in
te

rv
al
j:

..
.

..
.

..
.

x̄
j

=
x
j
/
k

C
→
A

:
p

ro
ve
x̄
j

is
co

rr
ec

t

in
te

rv
al
j

+
1:

..
.

..
.

..
.

s i
→
A

:
x
i(
j
+
1
)

A
→
s i

:
p

re
p

a
re

re
sp

o
n

se

p
ic
k
l i
j
∈
Z q

x
ij

=
b

σ
ij

=
S
ig
n

(g
p
k
,g
sk

[i
],
E

(x
ij
,l

ij
))

s i
→
A

:
l i
j
,E

(x
ij
,l

ij
),
σ
ij

b
=
x
i(
j
+
1
)

l j
=
∑ 1

≤
i≤

k
l i
j

A
→
C

:
l j
,{
E

(x
ij
,l

ij
),
σ
ij

:
1
≤
i
≤
k
}

x
j
+
1

=
∑ 1

≤
i≤

k
x
i(
j
+
1
)

a
1

=
E

(x
j
,l

j
)

A
→
C

:
x
j
+
1

a
2

=
�

k i=
1
E

(x
1
j
,l

1
j
)

a
3

=
∧k i=

1
V
er
if
y

(g
p
k
,E

(x
ij
,l

ij
),
σ
ij

)

if
a
1
6=
a
2
∨
¬a

3
re

je
c
t
x̄
j

T
ab

le
4.

2:
P

ro
to

co
l

st
ep

s
ex

ec
u
te

d
b
y

ea
ch

en
ti

ty
af

te
r
C

ch
al

le
n
ge

s
A

to
p
ro

ve
th

e
in

te
gr

it
y

of
d
at

a
re

ce
iv

ed
in

so
m

e

in
te

rv
al
j.

A
s

b
ef

or
e,

ti
m

e
in

cr
ea

se
s

fr
om

to
p

to
b

ot
to

m
.

57

4.6.3 With n ≥ k Sources

When the number of data sources n ≥ k, the privacy proxy A needs to determine

which users to group together. Once the sources have been grouped, the Location-

Proof protocol described in Section 4.6.2 must be repeated for each group. A could

always group all sources together, but then, there would only be one data point

(x̄j, ȳj, d̄j) during each interval j for the data collection region R regardless of how

large it was. For more fine-grained location-based information, A needs to cluster

as few close-by users as possible. More specifically, to preserve k-anonymity, A

must place at least k users in each group. Gkoulalas et al. [52] provide an exhaus-

tive overview of algorithms that cluster close-by data sources into groups of k or

more. The clustering protocol assumed by LocationProof is HilbertCloak [52], and

we have described it in Section 4.4. Eventually, when C challenges the integrity of

data received in some interval j for a given k-group, the LocationProof protocol

for that group continues as described in Section 4.6.2.

4.7 IMPLEMENTATION

We have simulated each of the components of LocationProof in Java. Data sources

are assumed to be participating in a data collection campaign to gather tempera-

ture data in an area around downtown Portland, OR. The region R where sources

simulate data collection is shown in Figure 4.4. In each interval, sources pick a ran-

dom temperature at a random location in region R and send it to the aggregator.

When C challenges the integrity of an aggregate, sources send the homomorphic

commitments to the data they collected in the corresponding interval.

The Pedersen homomorphic commitment scheme [98] was implemented using

the Java Qilin library [89]. Since the commitment scheme only works with integers,

a latitude x in region R was converted to an integer offset from the base using the

58

Figure 4.4: Data collection campaign simulated for a region around downtown

Portland, OR. R = [(−122.752◦, 45.455◦), (−122.556◦, 45.560◦)]

following formula:

(x− xmin)× 106

A longitude in the region R was converted similarly. Both latitudes and longitudes

were represented using 6 digits of precision in our implementation.

4.8 SECURITY ANALYSIS

As discussed in Section 4.5, LocationProof must be capable of preventing a mali-

cious C from compromising the privacy of data sources using the intersection or

inference attacks. LocationProof prevents these attacks by ensuring that sources

remain anonymous from C’s perspective at all times. There is no registration phase

and all data submissions happen via aggregator A. Furthermore, when sending the

response to C’s challenge, each source only sends commitments to their locations

rather than the locations themselves. The signatures on the responses are also

anonymous. Thus, C never obtains any linkable identifying information from the

59

application about sources across submissions.

Another threat LocationProof considers is the one to data integrity from ag-

gregator A. LocationProof prevents A from injecting inputs to the aggregation

function, or computing a different aggregation function altogether. This is done

by enabling C, the party most interested in the integrity of the aggregate, to chal-

lenge the result of the aggregation function. Using the homomorphic commitment

scheme, the data sources help C ensure that A is computing the right function us-

ing the right inputs. C has the choice of checking every aggregate for correctness

or some fraction of them. However, when checking only a fraction, C may miss

some fabricated aggregates before eventually detecting a malicious aggregator. We

analyze how long this might take in Section 4.9.

4.9 EVALUATION

In this section, we evaluate LocationProof to determine, (i) detection time: how

long it takes a consumer C to detect a malicious A, and (ii) source overhead : the

computational burden LocationProof places on a source.

4.9.1 Detection Time

If C challenges the integrity of aggregate xt received in each interval t, then it can

detect a malicious A the first time it lies, i.e. injects fabricated data or computes

an aggregation function other than the sum. However, in the interest of efficiency

C could choose to randomly challenge A with a probability p during any given

interval t. The random challenge forces the aggregator to guess when it is safe to

fabricate xt. Eventually, a lying aggregator will guess wrong and get caught. Lying

more only causes the aggregator to be detected faster, and lying less only delays

that outcome. The number of intervals before an aggregator lying with probability

q is detected can be modeled using the negative binomial distribution.

60

Figure 4.5: Expected number of intervals before aggregator A lying with probabil-

ity q is detected by consumer C challenging with probability p.

The discrete negative binomial distribution NB(r, p) describes the probability

of the number of “successes” in a sequence of binomial trials before r “failures”

occur. The success and failure probabilities are p and 1 − p respectively. In the

LocationProof protocol, “success” is represented by the event, “not detecting a

lying proxy”, and “failure” is represented by the event, “detecting the lying proxy”.

Thus, the success and failure probabilities in any given interval are 1− pq and pq

respectively. Also, since we are interested in the number of intervals before a lying

aggregator is caught for the first time, the parameter r = 1.

Now, the expected number of successes for a negative binomial distribution

with the above parameters represents the expected number of intervals before a

lying aggregator is caught for the first time, and this can be written as

1− pq
pq

Figure 4.5 shows the expected number of intervals before aggregator A lying

with probabilities q = {0.2, 0.3, 0.5, 0.7} is detected by consumer C challenging

with probabilities .01 ≤ p ≤ .99. We can see that while challenging 20% of

61

the time, the consumer is expected to detect a lying aggregator within 7 to 24

intervals for the aforementioned set of lying probabilities q. However, challenging

only a fraction of intervals also implies that the application must be resilient to

some amount of fabricated data. A consumer C can thus choose its challenge

probability p depending on how mission critical the application is.

4.9.2 Source Overhead

In this section, we measure the time and energy required by the sources to compute

commitments. These measurements reflect the computational overhead Location-

Proof places on data sources. Recall that LocationProof requires sources to create

commitments of their location coordinates and corresponding data in response to

C’s challenge. Table 4.3 shows the overhead experienced by an Android Nexus 4

platform (Version 4.3; quad-core 1.5 GHz processor; 2 GB RAM) and the Trusted

Sensing Peripheral (Chapter 3).

Android TSP

Current 144 mA 55 mA

Time 2.325 msec (±1.26) 3.44 sec (±0.03)

Energy Consumption 1.2 mJ 5 Joules

Table 4.3: Computational cost of computing commitments for a tuple of data

(xij, yij, dij) on a standard Android smart-phone and the Trusted Sensing Periph-

eral (TSP). Note the 95% confidence intervals indicated next to timing measure-

ments.

In the case of Trusted Sensing Peripherals (TSP), the time and energy mea-

surements have been extrapolated from those of software RSA encryption on the

TSP (Figure 3.5(b)). An RSA encryption requires one modular exponentiation as

opposed to the two required to create a commitment. Thus, computing a com-

mitment will require approximately twice as much energy as an RSA encryption

62

assuming the cost of the product operation is relatively insignificant1. Thus, the

energy consumed will be around 2 × 0.25 = 5 Joules per commitment and since

three commitments are computed per challenge, the energy consumption will be 6

times more than software RSA. Consequently, the battery life will be 1/6th of the

lifetime achieved with software RSA. Figure 3.5(a) depicts the battery life of the

TSP when performing RSA encryptions in software. Performing one encryption

every 30 seconds, the TSP achieves a battery life of ≈ 80 days. If C were to chal-

lenge the data in each such interval, implying p = 1, the battery life of the TSP

would reduce to approximately 1/6× 80 = 13.33 days. However, with a challenge

probability p = 0.2, the sources would have to compute commitments only 1/5th

of the time, improving the battery life to ≈ 66 days.

4.10 RELATED WORK

Much of the previous security oriented work in crowd-sourced sensing has focused

either on data integrity, or privacy, but not both. PoolView [49] enables commu-

nity statistics to be computed using perturbed private data, but trusts its users

to honestly perturb that data. PriSense [116] employs data slicing and mixing

to provide privacy while still supporting a wide variety of aggregation functions.

However, it is assumed the functions themselves are honestly computed. Our work

on Trusted Sensing Peripherals [38] supports high-integrity aggregation, but does

not provide privacy guarantees.

VPriv [100] seeks to offer integrity and privacy for computing functions (e.g.

total toll) over paths driven by individual vehicles. However, VPriv offers location

privacy by keeping the uploaded location tuples anonymous. Anonymity, in turn,

is provided using pseudonyms. Unfortunately, it has been shown that pseudonyms

don’t protect against inference attacks [73] since the uploaded tuples contain the

1The current draw remains the same during modular exponentiations, but since there are two
per commitment, the entire computation takes twice as long

63

raw locations. Additionally, VPriv does not support aggregating data from multi-

ple sources.

PrivStats [101] uses a combination of homomorphic encryption [94] and trusted

intermediaries to provide integrity guarantees to the data consumer while protect-

ing the privacy of data sources. The sources upload location-based information

that they encrypt using additive homomorphic encryption. The consumer then

computes over these encrypted tuples and sends the result back to a trusted

intermediary (can be one of the data sources). The trusted intermediary then

decrypts and returns the final result. Although, the PrivStats data publication

model is similar to LocationProof, it does not support collecting actual locations,

just location-based information (e.g. vehicle speed) from pre-determined locations.

Additionally, PrivStats relies on the separation of duties to preserve privacy. More

specifically, malicious clients colluding with the consumer can compromise the pri-

vacy of other users. This is because the consumer gets encrypted samples of data,

the decryption keys for which, belong to the users.

Unlike PrivStats [101], Rastogi et al. [105] and Shi et al. [115] protect a data

source’s location privacy while actually collecting locations as part of the data.

The fundamental tools are still homomorphic encryption [94] and a scheme similar

to the Pedersen commitment scheme [98] used in LocationProof respectively. How-

ever, they are query-based data collection systems, implying that the application

must first know the identities of the users it needs data from. Since sources are

not anonymous to the system, their locations are vulnerable to intersection attacks

(see Section 4.10). Another important issue is that there is no way to know which

general area the location-based information will come from: again, since these sys-

tems are query-based and the data source locations are private, the only solution

is to randomly query subsets of users and only then can the consumer learn the

region where data was collected from. Thus, unlike LocationProof, these systems

provide no control over the granularity of the collected location-based information.

64

4.11 LIMITATIONS

Currently, LocationProof can only be used to verify a location cloak represented

by the mean of locations it contains. A more useful cloak should depict the extent

of the cloaked region as well. For example, in addition to the mean, aggregator

A could also compute and send the standard deviation to C. Since the standard

deviation is also a mean (of distances from the mean), LocationProof can be used to

prove its integrity [25]. However, it is yet to be determined if giving the consumer C

both the standard deviation and the mean compromises a source’s location privacy.

Consider, for example, a brute-force attack where C tries all possible combinations

of k locations in R that satisfy both the mean and the standard deviation. If the

set of location combinations is small, then C may be able to learn the precise

locations of the k sources in the cloak. We hope to explore this attack further in

future work.

4.12 CONCLUSION

Crowd-sourced sensing has a bright future, but both the integrity of the collected

data and the privacy of data sources are always at risk. Without integrity assur-

ances, data consumers like the government or researchers will be reluctant to use

the data, and without privacy assurances, people will be reluctant to contribute

the data.

We have proposed a solution based on Pedersen’s homomorphic-commitment

scheme that simultaneously addresses the conflicting problems of integrity and

privacy. This solution allows an intermediary to convince a data consumer that

it is accurately performing a privacy-preserving transformation with inputs from

trusted sources, without providing those inputs to the consumer. Sources can be

trusted when, for example, they provide verifiable attestations to the integrity of

sensed data with the aid of integrated trusted platform modules [38].

65

Chapter 5

NON-INTRUSIVE CHEAT DETECTION IN ONLINE GAMES

A lot of hidden information is present in client programs of most existing online

multi-player games (e.g. unexplored map regions, opponent resource information).

This hidden information is necessary to locally render a player’s view of the game,

thus, avoiding the overhead of retrieving it from the server before each move. How-

ever, the same hidden information can be exploited by cheaters to gain an unfair

advantage over other players. Cheating has been shown to degrade the playing

experience for honest players and eventually cause loss of revenue for game devel-

opers [144]. For example, in the real-time strategy game Age of Empires, a “map

hack” allows the cheater to uncover map areas by modifying game client memory

rather than actually exploring them. Similarly, inspecting game client memory

can also reveal an opponent’s secret resources or activities normally hidden from

the player. In the words of Matthew Pritchard [102], “this cheating method was

the next best thing to looking over the shoulders of his [the cheater’s] opponents.”

Such cheats have been classified under the term information exposure [145, 102]

and have traditionally been identified using stealth memory and process scanning

programs deployed on a client’s gaming device. Warden [112, 84] is one such

scanning software used by the popular game World of Warcraft [19]. Warden has

suffered from false positives, performance issues, and has been labeled “spyware”

by the Electronic Frontier Foundation.

A less invasive method for preventing information exposure cheats involves

minimizing the hidden state information in the game client. This is done by having

the server load a client’s game state information on-demand [75]. For example, the

66

server could gradually expose only those portions of the game map a player can

’see’. Unfortunately, this method introduces game rendering delays because clients

now need to retrieve state information from the server after each move. Further, the

computational overhead of managing, disseminating, and maintaining consistency

across views hinders server scalability [137, 83, 75]. As a result, servers opt for

the simpler eager loading mechanism, in which, move updates from one player

are sent to every other player as they happen. This way, clients always have

the game rendering information available locally and the server does not have to

manage each player’s game state as in on-demand loading. The drawback is that

game clients are forced to secretly store sensitive game-state information belonging

to other players — regardless of whether its needed to render the current game

view. Thus, methods like eager-loading, although efficient, create the threat of

information exposure cheats. What is needed, is a more efficient method to detect

or prevent information exposure cheats.

5.1 APPLYING THE TRUST-BUT-VERIFY APPROACH

As discussed above, on-demand loading involves game servers accepting a player’s

move, computing a game view based on the new move, and returning the view so

that it can be rendered by the game client. It has been shown that computing this

view remotely results in significant game rendering delays. In this chapter, we use

the trust-but-verify approach to offload some of that computation to the client.

More specifically, after each move, a client computes and submits a view descriptor

which also represents the data to verify. The computation of this view descriptor

represents the generation function. The server then validates the descriptor and

returns a response containing the contents of the view (e.g. other players, moving

obstructions). Validation involves checking if the descriptor is consistent with the

player’s last move and the current global game state. This validation represents

the verification function in the trust-but-verify model.

67

5.2 CONTRIBUTIONS

This chapter presents a system called SpotCheck that provides a more balanced

defense against information exposure cheats in client–server online games. Like

on-demand loading, SpotCheck eliminates the need for hidden information in the

game client; and like eager loading it doesn’t require the server to track a client’s

view. The lack of hidden information obviates the need for invasive cheat detection

software like Warden [112]. However, information exposure cheats can still occur

by sending illegal view descriptors to the server. The advantage with SpotCheck is

that the overhead of checking the view descriptor can be traded for improved game

performance. For example, instead of checking every view descriptor, the server can

randomly check only a fraction of them. Although this introduces opportunities

for cheating, repeat offenders will eventually be identified. The general system

model in which SpotCheck is applicable is discussed in Section 5.3. SpotCheck’s

design is presented in Sections 5.4 – 5.8 and an evaluation of its efficiency and

effectiveness in the context of a simple real-time strategy game called Explorer is

described in Section 5.9.

5.3 SYSTEM MODEL

SpotCheck is applicable in online map-based games with a client–server architec-

ture. More specifically, as Figure 5.1 depicts, SpotCheck enables the game client

to compute a view for a player’s character (in the game) based on the player’s

input move. The idea is that as long as the view contains only those portions of

the map the player’s character is “supposed” to see in that stage of the game, then

the player could not be cheating. For example, if a character’s view is obstructed

by a hill, but the view sent to the server includes portions of the map behind the

hill, then the player must be cheating. The server can check for such fabricated

views to detect malicious players.

68

Game
Server1

Input
Move

Game
Client

2

3

4

Game
State

5

Compute
View

(Move, View)

Verify View

Figure 5.1: After the user enters her move, the game client computes a description

of the view (e.g. newly visible map regions). The server trusts the client to compute

this view, but occasionally checks if the view descriptor was computed correctly.

In the trust-but-verify context (see Figure 2.1), the game client is the data

source, the server is the data consumer, and the generation function is the one

that computes the view descriptor. Note that since a user’s every move is sent

from the game client to the server, no intermediate aggregators are necessary.

5.4 MOTIVATION AND RELATED WORK

Our goal is to develop an effective and scalable solution for detecting information

exposure cheats in client–server online games. Existing solutions are either effective

and not scalable, or vice versa. Popular games like World of WarCraft [19] and

StarCraft [18] use an anti-cheating software called Warden [112], which runs on

the client, scanning periodically for signatures of common cheats [125]. Tools

like Warden are not always effective for two reasons. First, they cannot detect

new information exposure cheats. For example, earlier map hacks were easy to

detect because they were implemented by patching the game client, but new map

hacks are harder to detect because they are external to the game and work by

reading game memory and exposing the map areas via overlays [12]. Second,

the scanning performed by such tools is widely considered to be a risk to personal

privacy. The Electronic Frontier Foundation has even labeled Warden as “spyware”

[81]. Another solution, called on-demand loading [75], proposes a change to the

69

server’s game state dissemination strategy that consequently prevents all forms

of information exposure cheats. In this method, the server disseminates state

information required to render the game only when clients need it. Thus, on-

demand loading eliminates any hidden information in the game client, leaving no

useful information to expose. Webb et al. [144] have called it the “most effective

solution” against this form of cheating. Unfortunately, the price of on-demand

loading is excessive server CPU overhead because the server must now track each

client’s view of the game. To avoid precisely this overhead, existing games like

World of Warcraft prefer eager-loading [75]. Eager-loading involves sending state

updates of one player to every other player. This eliminates the burden of tracking

every player’s view on the server and allows any client to independently render

the game. However, now, each player has state information belonging to all other

players whether or not it is needed to render their current view of the game. As a

result, the extraneous information is kept hidden in the game client waiting to be

exploited by those who know how to bypass cheat detection tools like Warden.

SpotCheck proposes a middle ground: trust the client to compute a description

of its own view, but enable the server to verify the description’s integrity. This

approach does not require the server to track client views, instead it only requires

the server to maintain global game state consistency and verify view descriptors.

As long as the verification process is cheaper than tracking a client’s view, our

approach will be more scalable than on-demand loading. Additionally, like on-

demand loading, game state information is disseminated to clients only as needed.

Thus, there is no hidden information in the game client that cheaters can exploit.

There is, however, another approach that could be used to prevent information

exposure cheats. Monch et al. [87] propose a technique that perpetually obfus-

cates all game state information stored in the client. The solution involves using

decoding and encoding functions before accessing or writing any game state infor-

mation. Also, since obfuscation does not provide cryptographic secrecy, the hiding

70

functions are changed periodically via a secret channel. Thus, forcing an adversary

to constantly reverse engineer the hiding functions.

If hiding functions are efficient and can indeed be surreptitiously changed faster

than the time required to reverse engineer them, then the above solution may be

effective. Unfortunately, the efficiency of the solution, the feasibility of constantly

generating and secretly transmitting strong hiding functions, and in general the

feasibility of developing tamper-proof software is still unclear [144].

5.5 EXPLORER

We analyze SpotCheck in the context of a simple real-time strategy game we call

Explorer. The game consists of players exploring a 2D terrain consisting of walls

and other obstructions (Figure 5.2(a)). Multiple players can play the game and

each player can have multiple units exploring the terrain. The map of the terrain

is composed of grids and each grid can contain either the terrain itself, part of a

wall, a player’s unit, or an obstruction. Additionally, unexplored regions of the

terrain and those that are outside a unit’s vision are kept hidden from the player

(Figure 5.2(b)). At any given time, a unit’s vision consists of the contents of a

5 × 5 grid around its current position. The only exception is that units cannot

see through walls, thus, parts of the terrain that belong inside the vision but are

blocked by walls will still be hidden. Player units can move one grid at a time in

vertical or horizontal directions uncovering contents of unexplored regions of the

terrain. In its current state, the game defines no objectives, player unit resources,

or conditions for victory.

Formally though, SpotCheck is applicable to games consisting of the following

high-level components:

• 1 to n players

• 1 to m units per player

71

(a) Screenshot

View
Explored Region

Player
Unit

(b) Schematic

Figure 5.2: Explorer overview

• Global game state St: the state of the game on the server after move t,

where t is a global move counter across all players. The global game state for

Explorer includes location and type information about terrain, obstructions,

and player units.

• Game map M : a set of e × e square-shaped cell locations. We assume a

square-shaped map and cell for simplicity, but SpotCheck need not be limited

by the shape of the map or the cell.

• View descriptor vit: the set of cell locations visible to all units of player i

after move t.

• View V i
t : view descriptor vit along with game state information associated

with cells in the descriptor.

• Explored Region Ei
t : game state information pertaining to the region of the

map explored by all the units of player i after move t.

• State request U i
t : sent to the server by player i after move t. The state request

consists of the view descriptor vit ,unit identifier and the new location of the

72

player’s unit.

• State update Di
t: sent from the server to the client after move t. The state

update may contain a player’s current view if generated in response to a state

request, or it may contain changes to the player’s current view as a result of

moves by other players.

The game progresses as players make their moves and send corresponding state

requests to the server. On receipt, the server verifies the integrity of the state

request by randomly performing either a heuristic-based check, or a more expen-

sive full check. State requests for illegal cell locations could escape detection by

heuristic-based checks but will eventually be detected by the full check. We eval-

uate this further in Section 5.9. Once verification succeeds, the server sends back

a state update. The game client then uses this state update to render a player’s

current view of the game. Intermittently, move updates from other players cause

state updates to be sent to affected players. However, these updates only include

changes to a player’s current view.

Our game, Explorer, can be configured to disseminate state information using

the three different strategies discussed earlier: on-demand loading, eager loading,

and SpotCheck’s strategy. The state request in on-demand and eager loading

consists only of the player’s new unit location, where as for SpotCheck, the state

request contains the view descriptor as well. The state update in on-demand

loading and SpotCheck consists of the player’s view, where as in eager loading, it

consists of information in a state request from any of the n players.

5.6 CHEAT MODEL

SpotCheck addresses application-level information exposure cheats [144], but un-

like eager loading where these cheats are executed by accessing game client memory,

SpotCheck forces cheaters to send malformed state requests to the server. Recall

73

that players progress in the game by sending and receiving responses to state re-

quests. These state requests contain the description of a player’s view, which is

verified by the server upon receipt. A cheater could conceivably construct a state

request with an illegal view descriptor vit
′

that includes locations out of its actual

view vit. For example, by requesting state information for a cell across a wall,

which by design blocks a unit’s line of sight. If the server is unable to detect such

malformed requests, then cheaters could potentially learn information about other

players in any portion of the map.

In the context of SpotCheck, accessing game client memory is not considered

an information exposure cheat. Mainly because SpotCheck eliminates the need for

any hidden information in the game client. Note that hidden information is defined

as any state information associated with map cells outside the explored region Ei
t .

In the case where the player’s view V i
t is a proper subset of the explored region

Ei
t , this definition does allow game state information Ei

t − V i
t in the client that is

not displayed to the player. However, this information is not considered hidden

because it was first displayed when the player last visited those cells and has not

been updated since.

Like on-demand loading, SpotCheck prevents infrastructure-level information

exposure cheats by design. These type of cheats involve using a network hub and

another host to sniff one’s own game traffic and change the way it is rendered on

screen. For example, modifying the display driver on the consorting host to render

the game world with transparent walls. In SpotCheck, since information about

cells outside a player’s view (e.g. behind walls) is never included in state updates,

it becomes futile to mount this type of cheat.

There are other ways of accessing hidden information that are outside SpotCheck’s

scope: a cheater might spoof a state request pretending to be another player. This

type of cheat would need to be addressed by introducing appropriate authentication

mechanisms [144]; a cheater might snoop another player’s communication channel

74

with the server. This type of cheat would need to be addressed by encrypting com-

munications between the client and the server; a cheater might collude with other

players to gain collective information; and lastly, a cheater might compromise the

server to learn about global game state, which is normally not exposed to clients.

5.7 CHEAT DETECTION

The game server detects a cheat when it can’t verify the integrity of a client’s

state request. State requests are sent to the server each time a client moves one

of its units to a new location. The server then chooses to verify the state request

with a probability p. The randomness ensures that a cheater does not know before

hand if her state request is going to be checked or not. Without that knowledge,

a cheater risks being detected and subsequently banned from the game. Since

cheaters cannot progress in the game without sending state requests, they are

forced to take their chances.

Notice that when p = 1, every state request is checked. The parameter p

essentially enables SpotCheck to provide game servers the flexibility of balancing

resources used for game state management against those used for cheat detection.

This is unlike on-demand loading, where the server is forced to track every client’s

view. The trade off with SpotCheck is that a cheater may initially get away, but

with more cheat attempts a malicious player will eventually be identified. Thus,

assuming that a player cheats during a move with probability q, the expected

number of moves in which the cheater will be detected is:

E(T) =
∞∑
t=1

t× (1− pq)t−1 × pq =
1− pq
pq

(5.1)

Where T is a discrete random variable representing the number of moves a

cheater can make before getting caught. We compare the expected outcome with

the experimental result in Section 5.9.

75

The server validates a state request by performing a full check of its contents.

A state request contains the player unit’s new location (move), unit identity, and

a view descriptor. A move is considered valid if the unit advances to an empty

and allowed map cell (currently, our game does not support multiple units in the

same cell). A valid move results in an update to the global game state. Then, the

updated game state information is used to construct the expected view descriptor

for the player and compared to the one that was included in the request. Any

discrepancies between the two is considered a cheat attempt. A state request that

passes the full check is considered valid.

One disadvantage of probabilistically validating state requests is that easily pre-

ventable cheat attempts can occasionally escape detection. For example, a cheater

may retrieve a snapshot of the global game state by constructing a view descriptor

that includes all cell locations on the game map. This cheat can easily be prevented

by validating the size of the view descriptor. To prevent such cheats, SpotCheck

allows game servers to perform heuristic-based checks of the state request during

those moves when the complete check described above is not performed.

We have currently implemented two heuristic-based checks of the state request.

Each of these checks validate the range of legal values for individual components of

the state request. The first heuristic, called distance bound, checks if the player’s

move is legal. So for example, in Explorer, units are not allowed to move more than

one cell at a time. The second heuristic, called vision size bound, checks that the

size of the view descriptor does not exceed the possible maximum for the player.

5.8 ARCHITECTURE

The components of our game are split across the client and server. At a high level,

the game client accepts key stroke input and renders the game, whereas the server

validates the inputs and sends back the information necessary to render the game.

76

5.8.1 Client Components

Game map. Stores the 2D game map. The map is composed of cells each of

which contain a wall, a player unit, an obstruction, or the terrain itself. Information

about the contents of the map is stored in the local game state.

Game state manager. All the information about a player’s explored region

is stored in the local game state. The state manager runs every time a move is

generated and sends the move along with the current view descriptor in a state

request to the server. The server validates the state request and sends back a state

update containing information required to render the player’s view.

Rendering engine. Renders units, obstructions, walls, and terrain on visible

portions of the map while blacking out the rest of the cells. After the state manager

has received the necessary information required to render the player’s view, it is

passed on to the rendering engine, which then draws the view on the screen.

Input mechanism. Interprets key strokes as moves and forwards them to the

game state manager.

5.8.2 Server Components

Request validator. As shown in Figure 5.8.2, the validator receives a state

request from the client and chooses to either validate it with a probability p or

check it using simple heuristics (see Section 5.7). A state request that passes the

checks is then forwarded to the state update generator.

State update generator. Uses information in the state request to update global

game state. Then, information pertaining to the player’s view is retrieved from

the global game state and sent as a state update.

77

Figure 5.3: SpotCheck server-side architecture

It is worth mentioning that the state request validator need not run as part

of the request processing pipeline (Figure 5.8.2). The heuristic checks could still

be done serially while the full check would happen in the background. Any game

state corruption discovered during the full check may need to be reconciled. Al-

though we have not explicitly evaluated this alternative, we believe that having

the validator run in parallel can reduce state update response time and lead to an

improved gaming experience with minimal impact on cheat detection integrity or

performance.

Although SpotCheck is designed to detect information exposure cheats, it does

not preclude including methods that detect other classes of cheats. For example, in

the future, we plan to augment SpotCheck with code injection and entanglement

algorithms [87] that prevent bots/reflex enhancer cheats.

5.9 RESULTS

We will now evaluate SpotCheck against on-demand and eager loading while two

players play a game of Explorer. The performance of eager loading forms our base-

line since it provides no intrinsic protection against information exposure cheats

78

Client ClientState
Request
Logger

State
Update
Generator

Game
State

State
Request

Full
Check

GameState
Reconciler

Heuristic
Checks

State

Request
State

Update

Notification

Figure 5.4: Alternative architecture: request validation in parallel

and is currently the most prevalent method for disseminating game state informa-

tion. On-demand loading is very effective against protecting information exposure

cheats, but is expensive for game servers to implement.

Our goal is to significantly reduce the overhead on the game server when com-

pared to on-demand loading while providing similar levels of protection against

information exposure cheats. Specifically, we will compare server CPU overhead,

message sizes, and client game rendering latency of our approach with on-demand

and eager loading. We will also evaluate the time it takes for SpotCheck to detect

information exposure cheats.

5.9.1 Experimental Setup

The test system used to gather performance data is a Dell Latitude E6510 config-

ured with an Intel Core i5-M580 CPU running at 2.67 GHz with 4 GB of main

memory. Intel TurboBoost and SpeedStep were disabled through the system BIOS.

The operating system is a 32-bit Ubuntu 11.04 with Linux kernel version 2.6.38.9-

generic. All experiments were performed with the game client and server on the

same machine.

79

5.9.2 Evaluation

Figure 5.5 plots server CPU overhead of the three schemes against units per player.

Additionally, SpotCheck is plotted for the scenarios where 100% (p = 1), 25%, and

5% of the state requests are checked. The CPU overhead is measured as the total

CPU time required by the server to process, check, and respond to a state request.

Here, map size is held constant at 100 × 100 cells and the error lines indicate a

95% confidence interval over 200 runs per data point. Unless mentioned, the stated

constants remain the same for all future plots.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80

M
e
a
n
 C

P
U

 T
im

e
 (

µ
se

c)

Units/Player

SpotCheck 100%
On Demand

SpotCheck 25%
SpotCheck 5%

Eager

Figure 5.5: Server CPU overhead

The CPU overhead of SpotCheck and on-demand grows because more units

increase the size of a player’s view, which consequently, requires more process-

ing on the server. In eager loading, the game client deals with views, thus the

server’s overhead remains nearly constant and less than on-demand or SpotCheck.

SpotCheck 100% incurs more overhead than on-demand loading because checking

every state request is more expensive than tracking a player’s view. This is not

surprising because view tracking updates a stored view descriptor on the server

with every state request, where as validation involves the more expensive oper-

ation of computing a new one from scratch each time (see Section 5.7). Notice

80

though that spot checking 5% of the requests requires nearly half the overhead of

on-demand, where as checking 25% requires slightly more.

Figure 5.6 plots expected (Equation 5.1) and observed number of moves SpotCheck

requires to detect an information exposure cheat versus various values of checking

(p) and cheating (q) frequencies. A move where no cheating takes place is referred

to as an “honest move”, while the opposite is referred to as a “cheat move”. For

this experiment, we perform an information exposure cheat by issuing an illegal

state request, where the view descriptor contains a location not in the player’s

current view. We also ensure that the information exposure cheat can bypass all

heuristic checks. Thus, the cheat can only be detected by a full check. We can see

that even when spot checking only 5% of the state requests, players cheating 50%

of the time are detected before their 25th cheat attempt. If players cheat less (5%)

and SpotCheck checks less (5%) then the number of moves required to detect a

cheater increase significantly, but the number cheat moves remain small (≈ 15).

 0

 50

 100

 150

 200

 250

 300

Ex Ob Ex Ob Ex Ob Ex Ob Ex Ob

M
o
v
e
s

p,q =

Cheat Move
Honest Move

.05,.05.5,.05.2,.2.2,.05.05,.5

Figure 5.6: Expected (Ex) and Observed (Ob) number of moves before a cheat

attempt is discovered. Number of cheats that escaped detection are also shown as

a portion of total moves.

Figure 5.7 (top) plots the size of a state update against the percentage of

occupied locations visible to a player on the map. The size of the state update

81

will significantly impact the server’s outbound bandwidth requirements as players

increase. Here, we focus on the request and update sizes for only one player

with five units in the game. Additionally, 120 randomly chosen map locations

are occupied by obstructions. In Explorer, the state update contains five bytes of

information per location. We can see that under SpotCheck and on-demand, the

size of the state update depends on the occupied locations visible to the player.

Under eager loading, the server is oblivious to a player’s view, thus it must send

information about all the locations in question, forcing the update size to be larger

than (or equal to) that of SpotCheck and on-demand.

Figure 5.7: State update and request message sizes

Figure 5.7 (bottom) plots the size of the state request against the percentage

of locations visible to a player on the map. Since the state request in eager and

82

on-demand loading does not contain a view descriptor, its size remains smaller

than (or equal to) that of SpotCheck. Note, however, that Explorer uses the most

naive method of encoding view descriptors: four bytes per visible location. Using

better encoding schemes should result in much smaller request sizes.

Figure 5.8 plots client game rendering latency for SpotCheck (p = 0.05), on-

demand, and eager loading. Rendering latency is measured as total CPU time

between sending a state request and rendering the contents of the corresponding

state update on screen. Keep in mind that the client and server are on the same

machine hence the round-trip-time is fairly small. We can see that rendering

latency increases with units per player. This is mainly because more resources are

required to render the larger view of all units. SpotCheck and on-demand induce

more latency than eager loading because of the additional time the server spends

verifying the state request and tracking views respectively. Notice, however, that

the latency incurred by SpotCheck is consistently less than on-demand even though

SpotCheck requires more game processing on the client. This is because the server

is more efficient under SpotCheck than under on-demand when responding to state

requests.

 300

 320

 340

 360

 380

 400

 420

 440

 460

 0 10 20 30 40 50 60 70 80

La
te

n
cy

 (
M

ic
ro

 S
e
cs

)

Units/Player

Eager
SpotCheck 5%

On Demand

Figure 5.8: Client game rendering latency for SpotCheck, on-demand, and eager

loading

83

5.10 CONCLUSION AND FUTURE WORK

We presented SpotCheck, an efficient defense against information exposure cheats.

SpotCheck strives to be the middle ground between on-demand loading, which

prevents this class of cheats entirely, but is expensive for the game server to imple-

ment; and eager loading, which provides no protection from cheats, but is preva-

lent in online games today due to its performance benefits. The key idea behind

SpotCheck is to allow the clients to track and request contents of their game view,

but randomly sample and validate their requests. SpotCheck allows game servers

to change the sampling frequency, thus trading off CPU overhead for increased

cheat protection or vice versa. We have shown that SpotCheck can reduce the

server CPU overhead by as much as half when compared to on-demand loading,

while still being an effective defense against information exposure cheats. In the

future, we plan to incorporate SpotCheck into a real-world game and evaluate its

performs with a much larger number of players.

84

Chapter 6

EFFECTIVE SPAM PREVENTION IN ONLINE MESSAGING

APPLICATIONS

Internet spammers are relentless. Although, email spam is reducing (≈ 70.5% in

Jan 2012 from 92.2% in Aug 2010), the spam on social network sites is edging up

[51]. Approximately 4 million Facebook users receive spam from around 600,000

new or hijacked accounts each day [51, 80]. What’s worse is the success rates

of social spam: in Jan 2010, 0.13% of all spam URLs on twitter were visited by

around 1.6 million unsuspecting users [56]. This “clickthrough” rate is almost two

orders of magnitude larger than for email spam. Spammers cost businesses $20.5

billion annually in decreased productivity and technical expenses, and this cost

is projected to rise to $198 billion in the next four years [119]. There are two

prevalent methods to prevent this deluge of spam: CAPTCHA and proof-of-work ;

both methods have benefits and drawbacks [59].

A CAPTCHA can effectively protect an online transaction so long as there

aren’t OCR algorithms that can automatically “solve” or “break” it [124]. Once a

class of CAPTCHAs is broken, the corresponding application becomes defenseless

against spam bots. CAPTCHAs are also prone to outsourcing attacks where hu-

mans are employed to solve CAPTCHAs en masse. A major cause of success for

these attacks is that CAPTCHAs don’t provide a way to change the cost of solving

them [90, 91]. Additionally, the usability burden imposed by CAPTCHAs [147]

limits their use to only protecting infrequent transactions like creating accounts.

This leaves frequent transactions, like message posting, open to abuse. Attackers

exploit this loophole by hijacking accounts and using them to send spam.

85

The Proof-of-work approach does not have CAPTCHA’s usability issues and

can therefore be used in frequent transactions. This is because the assigned “work”

can be done automatically by the user’s web browser without user intervention.

Additionally, this paradigm enables an application to price a transaction by varying

the amount of work that needs to be done as payment. The idea is to issue more

“work” to suspected spammers than to honest users, thus, effectively reducing

incoming spam.

The disadvantage of a proof-of-work approach is that the “work” done by users

is essentially wasted. The Reusable Proof-of-Work (RePoW) approach [64] pro-

poses using puzzles whose solutions can be used for a greater purpose (e.g. protein

folding [95]). The problem is that puzzles must be hard to solve and easy to check

if they are to be a practical spam prevention solution. Unfortunately, there are

very few known reusable proof-of-work puzzles whose solutions are easy to check

[64, 17]. What is needed is a proof-of-work system that enables issuing generic

puzzles (e.g. protein folding [95]) whose result can be checked more efficiently

than recomputing the puzzle itself.

6.1 APPLYING THE TRUST-BUT-VERIFY APPROACH

In this scenario, the puzzles are the generation functions and the result of solving

the puzzle is the data to verify. The goal then, is to develop a verification function

that allows a puzzle issuer to check the solution of a puzzle without having to

recompute it. This is done by bootstrapping the puzzle issuer with a set of known

puzzles — puzzles whose solutions are already known. Then, clients are issued a

sequence of known and unknown puzzles. Once the clients execute the puzzles and

return the solutions, the receiver verifies them by checking the solutions of only the

known puzzles. As long as clients cannot distinguish between known and unknown

puzzles, they will have no guaranteed way to pass verification. The details and

86

analysis of the verification process is presented in Section 6.5.3. Before the trust-

but-verify approach can be applied, however, we need to build the infrastructure

that allows issuing generic puzzles and accurately identifies malicious users so that

they can be issued more difficult puzzles.

6.2 CONTRIBUTIONS

This chapter describes MetaCAPTCHA, an application-agnostic spam prevention

service for the web. It can be used by applications like discussion forums, web-

mail, and social web sites. MetaCAPTCHA’s novelty stems from the following

contributions:

• It seamlessly integrates the CAPTCHA and proof-of-work approaches while

augmenting each: it can dynamically issue proof-of-work or CAPTCHA puz-

zles while ensuring that malicious users solve much “harder” puzzles —

CAPTCHAs included — than honest users. More specifically, our results

show that honest users were never issued a puzzle during 95% of their trans-

actions.

• Puzzles are randomly picked and delivered within a generic solver that even-

tually executes those puzzles in the user’s web browser. Thus, the solver

code is metamorphic: changing randomly in each transaction. This turns the

reverse engineering problem around on the adversary who must now attach

a debugger to discover the solver’s execution steps.

• It uses a Bayesian reputation system that can accurately predict a user’s

reputation score based on features configured by the web application. Since

multiple web applications can be protected by MetaCAPTCHA, its reputa-

tion system provides global visibility on attacks across all those applications.

• It contains a modular puzzle library that can be configured with new classes

87

of CAPTCHAs or proof-of-work puzzles while allowing the removal of those

classes that are known to be “broken”. These puzzle library modifications

can be made by the web application without any change to its source code.

Furthermore, the variety of puzzles in the library ensures that breaking one

class of puzzles won’t compromise MetaCAPTCHA as a whole.

• Generic-puzzle solution verification. Proof-of-work approaches usually rely

on the puzzle construction to provide a short-cut for checking the puzzle

solution (otherwise verification would involve recomputing the costly puz-

zle). However, this severely limits the class of puzzles that can be issued.

MetaCAPTCHA has the ability to issue and verify the output of generic

computational tasks without having to redo those tasks. This facilitates the

use of volunteer computing projects [20] as puzzles. For example, see Sec-

tion 6.6.2 for the description of a puzzle that enables counting fish in the

Bonneville Dam [136] in Oregon, USA.

• Web applications can easily install the MetaCAPTCHA API by making

changes similar to those required by existing CAPTCHA implementations

[53, 99].

6.3 BACKGROUND

MetaCAPTCHA dynamically issues CAPTCHA and proof-of-work puzzles. We

now provide a brief background on each kind of puzzle.

6.3.1 CAPTCHA

CAPTCHA stands for “Completely Automated Public Turing-test to tell Com-

puters and Humans Apart”. CAPTCHAs usually consist of images containing

squiggly characters that are easy for humans to read, but hard for programs to

parse. If a respondent solves the CAPTCHA correctly, the implication is that the

88

respondent is most likely human. The idea is to allow humans to access the web

application’s services while deterring automated adversaries like bots. A popular

implementation of the CAPTCHA is the reCAPTCHA [138]. Notice also, that the

verification strategy (in the trust-but-verify parlance) is to check the solution to

every CAPTCHA issued.

6.3.2 Proof-of-work

The proof-of-work approach was first proposed by Dwork and Naor [40] to combat

email spam. The idea was to impose a per-email cost on senders, where, the cost

was in terms of computational resources devoted by the sender to compute the pric-

ing function. Once a sender proved that it correctly computed the pricing function,

the server would send the email. As with CAPTCHAs, the verification strategy

is to validate the result of every pricing function issued. Effectively, sending bulk

spam would become “expensive” because computational resources are finite. The

characteristics of such a pricing function f was then described as follows:

1. “moderately” easy to compute

2. not amenable to amortization: given any l values m1, . . . ,ml, the cost of

computing f(mi) is similar to the cost of computing f(mj) where i 6= j. In

other words, no amount of pre-processing should make it easier to compute

f on any input.

3. Given x and y, it is easy to check if y = f(x)

An example of a pricing function is one that finds partial hash collisions [14]. A

function fk : x → y is said to compute a k-bit partial hash collision on string x,

if given a hash function H, the first k bits of H(x) are equal to the first k bits of

H(y). Notice that fk(·) has all the properties required of a pricing function.

Although the proof-of-work approach seemed promising, Laurie and Clayton

[74] demonstrated in 2004 that reducing spam to 1% of normal email would require

89

delaying each message — including one that an honest user sends — by ≈ 6

minutes; a high price to pay for innocent users. This delay was computed based

on then current rates of spam, number of email users, and under the assumption

that 1 million compromised machines were spewing spam. Since then, spam has

increased by 18% to 74.2%, so we expect the aforementioned delay to be much

larger now.

To reduce this delay, Liu and Camp [77] proposed basing puzzle difficulties on

user reputation. The idea was that users with lower reputations would receive

harder puzzles than those with higher reputations. Since easier puzzles would be

much quicker to solve, honest users would experience a nominal delay when sending

messages where as malicious users may be significantly delayed. Thus, with an

accurate reputation system, the proof-of-work approach can be a practical, fair,

and effective technique for combating spam.

6.4 SYSTEM MODEL

This section describes the system model in which MetaCAPTCHA is applicable.

In general, interactive web applications where online transactions can be exploited

by spammers, such as message forums, webmail, social applications, and event-

ticket purchasing can employ MetaCAPTCHA for spam prevention. Heymann et

al. [59] provide an exhaustive discussion on the common characteristics of such

web applications.

An overview of the system model and high-level interactions between the Meta-

CAPTCHA service, the web client, and the corresponding web application is shown

in Figure 6.1. The interactions begin when a user attempts to perform an online

transaction. The web application allows the transaction to proceed only when it

has sufficient proof that the client completed the work it was assigned by Meta-

CAPTCHA.

90

MetaCAPTCHA

Web App

Submit Message

Need Proof-of-Work

Solve Puzzle

Get Proof-of-W
ork

1

2

4

3

Show Proof-of-Work5

Initial
Setup

Client

Browser + User

Figure 6.1: System model: user’s browser must show proof-of-work before the

web application accepts the user’s message. The dotted line indicates initial setup

performed by the web application to use the MetaCAPTCHA service.

The work is issued in the form of “puzzles”. Puzzles can be interactive, non-

interactive, or hybrid. Interactive puzzles are generally CAPTCHAs, whereas non-

interactive puzzles are pricing functions as described in Section 6.3.2. A hybrid

puzzle combines a CAPTCHA and a pricing function into one puzzle. Furthermore,

puzzles can either be known or unknown depending on whether their solutions are

already known or not.

As shown in Figure 6.1, we treat the user separate from the browser while

collectively referring to them both as the client. This is due to the existence of

interactive puzzles that need user interaction to solve, and non-interactive puzzles

that are solved automatically by the browser.

In the trust-but-verify context, the client is the data source and the Meta-

CAPTCHA service is the consumer. The function being validated is the puzzle

whose inputs are provided by MetaCAPTCHA. The goal is to ensure that the

source correctly computes or “solves” the puzzles. Details on how puzzle solutions

are verified are presented in Section 6.5.3.

91

6.5 COMMUNICATION PROTOCOL

This section discusses the MetaCAPTCHA communication protocol. For simplic-

ity, we assume the scenario where a client is attempting to post a message. Note,

however, that MetaCAPTCHA can protect more general web transactions like

purchasing event tickets, creating accounts, etc.

A web client begins communicating with MetaCAPTCHA after being referred

by the corresponding web application. In this case, the application will refer a

client attempting to post a message to MetaCAPTCHA. The client will then need

to obtain and solve a puzzle. The idea is that the web application will allow

messages from only those clients that have successfully solved a puzzle issued by

MetaCAPTCHA. The communication protocol for obtaining and solving a puzzle

begins with authentication as explained in the next section.

6.5.1 Authentication

MetaCAPTCHA only issues puzzles to clients of participating web applications.

This requires MetaCAPTCHA to authenticate two things, (i) the identity of the

web application, and (ii) the client is an authorized user of the web application.

MetaCAPTCHA provides each web application with an API key K during a reg-

istration phase. The web application must keep K secret as it will later be used

for authenticating both the application itself and all its clients.

User/
Client

TGS

Server
1

2 3

4

5

1. Request for TGS ticket
2. Ticket for TGS
3. Request for Server ticket
4. Ticket for Server
5. Request for service

Kerberos

Web Application

MetaCAPTCHA

Figure 6.2: Kerberos authentication overview and how it relates to Meta-

CAPTCHA authentication. Figure adapted from Steiner et al. [123]

92

As implied by the system model in Section 6.4, a client is not given access to the

services provided by the web application until it shows proof of a correctly solved

puzzle. The only way to be issued a puzzle is to first show that the client is an

authorized user of a registered web application. A client does so by presenting to

MetaCAPTCHA a “server-ticket” issued by the web application. The authentica-

tion protocol used is modeled around Kerberos [123], wherein the web application

acts as the Ticket-Granting-Server (TGS) for the MetaCAPTCHA service as shown

in Figure 6.2 [123]. Notice that steps 1 and 2 of the Kerberos protocol — where a

client authenticates itself to Kerberos — are not required because MetaCAPTCHA

assumes that it will be replaced by the web application’s existing authentication

mechanism (e.g password).

After a client submits a message, the web application returns a server-ticket

S1 = C||ID||HMAC(K,C||ID) containing client-specific information C, a web

application ID issued by MetaCAPTCHA during the registration phase, and a

Hash-based Message Authentication Code (HMAC) for C created using the web

application’s secret keyK (See Figure 6.3). The server-ticket S1 is called the puzzle-

request ticket and is sent by clients to MetaCAPTCHA for requesting puzzles.

Web
Browser

MetaCAPTCHA

Web App

Submit Message

Solve/Verify

Puzzle

1

2

4

5

3

5

Es
ta

bl
ish

 S
ha

re
d

Se
cr

et
 K

ey

HeadWinds assigned application ID

Web application's secret key

Proof-of-Work

Figure 6.3: MetaCAPTCHA authentication and puzzle solution verification

When MetaCAPTCHA receives the puzzle-request-ticket S1, it verifies that the

client is indeed a user of a registered web application. MetaCAPTCHA performs

this verification by checking the integrity of the HMAC included in the ticket. No-

tice that the correct HMAC can only be generated by a registered web application

because it includes that application’s unique API key.

93

Once the integrity of the HMAC is ascertained by MetaCAPTCHA, the client

is issued a puzzle to solve. Details of client-specific information C are presented in

Section 6.5.2.

6.5.2 Puzzle Delivery

MetaCAPTCHA only issues puzzles to authenticated clients as previously shown.

The hardness of the issued puzzle depends on the client-specific information C =

(timestamp, message data) sent by the client to MetaCAPTCHA during the au-

thentication phase. Here, timestamp indicates when the message was created (this

assumes the web application and MetaCAPTCHA are loosely time-synchronized);

message data contains the message text submitted by the client and any other

information related to it. MetaCAPTCHA uses the information in C to compute

a reputation score, which in turn is used to determine the puzzle difficulty level :

the amount of time a user’s browser must compute to provide sufficient proof-of-

work to the web application. In MetaCAPTCHA, higher reputation scores imply

more malicious clients. As a result, such clients are issued puzzles with increased

difficulty levels. The details of how reputation scores are computed, and how puz-

zles of varying difficulty are generated are presented in Sections 6.6.1 and 6.6.2

respectively.

Web
Browser

MetaCAPTCHA

Iss
ue Sub-puzzle

Return solutio
n

1

2

Figure 6.4: The user’s web browser is continuously issued puzzles until it has spent

enough time computing. This amount of time is called the difficulty-level; more

malicious the client, the larger the puzzle difficulty-level.

It is important to note here that MetaCAPTCHA may issue multiple puzzles

94

during a single puzzle solving session. Puzzles are continuously issued until the

client has computed for an amount of time similar to the estimated difficulty level.

Pre-determining a difficulty level eliminates the usual incentive of solving puzzles

faster. Furthermore, the estimated difficulty level is never directly revealed, thus

the client cannot make the decision to stop solving based on the amount of work

it needs to do. Figure 6.4 shows the puzzle solving protocol.

6.5.3 Puzzle Verification

Once the user’s browser has solved all puzzles, it must send back the final solu-

tions to MetaCAPTCHA. If the solutions are correct, MetaCAPTCHA will issue

the client a proof-of-work-ticket S2 = Ts||Te||HMAC(K,Ts||Te||S1), where Ts and

Te are the start and end time stamps of the puzzle solving session. The client

must present this ticket to the web application (see Figure 6.3), which will then

verify its integrity before allowing the client to complete posting the message. Ad-

ditionally, if the difference between the current time and Te is greater than some

threshold tdiff , the client’s proof-of-work ticket is considered to be expired and is

subsequently rejected.

Verifying a puzzle solution usually involves a short-cut method described by the

corresponding puzzle construction [108]. This ensures that the resources required

to verify a puzzle solution is less than that required to compute or “solve” the

puzzle. However, such short-cut methods may not always be available. Consider a

volunteer computing project like BOINC [20]. BOINC enables people to contribute

computational resources to scientific computing projects like protein folding [95,

128]. These projects divide the computational work among programs that can

be executed simultaneously by multiple processors. Then, computers owned by

BOINC volunteers retrieve these programs, execute them, and return the result

to the respective project. Essentially, MetaCAPTCHA could treat each of these

programs as a puzzle and issue them to clients. However, there are no readily

95

available short-cuts to verify the solutions of such puzzles.

MetaCAPTCHA employs the trust-but-verify approach to check puzzle solu-

tions without having to recompute them. Here, the puzzle represents the genera-

tion function of the trust-but-verify approach. To build the verification function,

MetaCAPTCHA must first be bootstrapped with a set of puzzles whose solutions

are already known; let’s call this the set of known puzzles . Then, during a puzzle

solving session, MetaCAPTCHA issues a known puzzle with probability p or a

normal puzzle otherwise (one whose solution is not known). As long as a client

cannot distinguish between a normal puzzle and a known puzzle, it will have no

choice but to faithfully compute the solutions to all puzzles.

A client that cheats, one that sends back random numbers instead of actually

computing puzzle solutions, will eventually get caught. If we assume that a ma-

licious client cheats with probability q when issued a puzzle, then the probability

with which it will get caught is pq. The probability of the number of puzzles issued

before a cheating client is caught for the first time can be modeled as the negative

binomial distribution NB(1, 1 − pq). Here, the first parameter is the number of

cheat attempts before getting caught and the second parameter, 1 − pq, is the

probability of not getting caught when issued a puzzle. Given these parameters,

the number of puzzles expected to be issued before a cheating client is caught for

the first time can be written as

1− pq
pq

Additionally, MetaCAPTCHA can add to its set of known puzzles by incor-

porating the solutions of normal puzzles submitted by honest clients. An honest

client could be defined as one that gets the solutions to all known puzzles right.

However, this does not mean that the client did not cheat at all, but that cheating

was less likely. To see how likely, we quantify the probability that a cheater gets

96

the solutions to each of the randomly injected known puzzles right as:

n∑
c=k

(
n

c

)
(1− q)cqn−c

Here, n represents the total number of puzzles issued in a single puzzle solving

session and k represents the number of known puzzles injected during that session.

Recall, that a known puzzle is injected with probability p so we expect that k =

p×n. As indicated by the above formula, the cheater faithfully solves the k injected

puzzles, but may or may not do the same for the rest of the puzzles.

Figure 6.5: Probability that a cheating client correctly solves each of the randomly

injected puzzles during a single puzzle solving session. The total number of puzzles

issued is n = 10, the number of randomly injected puzzles is k = p × n, and q

is the probability with which a client cheats i.e. responds with a random number

instead of actually solving the puzzle.

Figure 6.5 plots this probability for various values of p and q. We can see that

when p = 0.6 and q = 0.5, the probability that a cheater gets all known puzzles

right is less than 0.15. To further increase the confidence in the correctness of

a puzzle solution incorporated in the above manner, MetaCAPTCHA could also

97

compare the solutions of multiple honest users. If a majority of honest clients get

the solution to a particular normal puzzle correct, then the corresponding puzzle

can be added to the known puzzle set. This approach is similar to the one used by

reCAPTCHA [53] where two CAPTCHAs, one whose solution is known and the

other not, are presented to the user.

6.6 SYSTEM COMPONENTS

In this section, we describe the main components of MetaCAPTCHA: the reputa-

tion service, the puzzle service, and the public API used by web applications and

their clients to access the aforementioned services. Briefly, the interactions between

these individual components begins when MetaCAPTCHA receives a client’s mes-

sage. This message is first handled by MetaCAPTCHA’s reputation service, which

determines the client’s reputation score. The puzzle service then uses this score

to generate and issue a puzzle of an appropriate difficulty. Figure 6.6 shows an

overview of the various MetaCAPTCHA components and interactions, while the

following sections describe each of them.

Puzzle
Service

Reputation Service

DB

API
Client Server

Authenticators,
Session State,
Puzzles

Reputation
Score

Blacklists, Akismet, etc.

Client
Browser Web App

Puzzle

ClassifierDB

Training DataPuzzle Request

Figure 6.6: Design of MetaCAPTCHA

98

6.6.1 Reputation Service

Proof-of-work systems that do not assign more “work” to malicious clients than

legitimate ones are easily circumvented [74]. Many existing systems do vary the

amount of work, but fail to characterize maliciousness appropriately. For example,

they base maliciousness on just one feature, such as system load [33, 67], a client’s

request rate [45, 46], contents of the request [149], or service demand [140, 141].

Without a defense-in-depth approach, it is unlikely that proof-of-work systems will

be able to effectively deter automated adversaries. Additionally, if a reputation

system intends to be widely deployed, it must be capable of adapting to the needs

of individual applications [77]. For example, Twitter may associate low reputation

with accounts that show aggressive following behavior [135], whereas Facebook

may do the same for accounts with abnormally large amount of ignored friend

requests [24]. MetaCAPTCHA’s reputation service addresses these issues by al-

lowing applications to easily configure the features that will determine a client’s

reputation score, and then use a Naive Bayes classifier to generically predict the

score based on the values of the configured features.

The reputation score is the probability that a given message is spam as deter-

mined by a Naive Bayes classifier. A client’s reputation score is calculated each

time she posts a message to the web application and is dependent on the features

of the message and the client that sent it. A feature is any metric with a finite

set of values. For example, blacklist status of the message’s source IP address,

SpamAssasin score of the message, or number of times the poster was “thanked”.

Given such message features and any other client-related features provided by the

web application, MetaCAPTCHA’s reputation service can generate the client’s

reputation score.

An important characteristic of a reputation system is its ability to react to

a client’s changing reputation. For example, if a user’s account is hijacked by a

spammer, her account’s reputation worsens; however, once the threat from the

99

hijacker is neutralized (say, by a password change) the reputation goes back to

normal. Thus, a good reputation service must be capable of identifying these

changes and assigning scores accordingly. MetaCAPTCHA’s reputation service

adapts to reputation changes by incorporating time-varying features in determining

the reputation score. For example, relative account age, and relative number of

positive votes a user’s posts have received.

The reputation service is initialized by training the classifier using ground-truth

feature values for messages that have already been posted. Training information

about each message must include the values for each feature and its classification

as spam or ham (not spam). The information about all messages is then fed to the

classifier, which builds a probability model to determine how likely a given new

message is spam. This likelihood or probability is called the reputation score and

its value ranges from 0 to 1 with higher scores implying more malicious users.

6.6.2 Puzzle Service

The puzzle service is responsible for authenticating users, using the contents of

their transaction (e.g. message, IP address) to obtain a reputation score from the

reputation service, converting that score to a puzzle difficulty, and finally, issuing

the user a puzzle of that difficulty. Note that the authentication protocol was

described in Section 6.5.1. In the following sections, we discuss the remaining

responsibilities of the puzzle service.

Reputation Score to Puzzle Difficulty

As mentioned before, puzzle difficulty is the amount of time a client must be kept

busy solving a puzzle. Traditionally, most puzzles have been CPU bound, caus-

ing devices with different processing speeds to solve the same puzzle for different

amounts of time. Abadi et al. highlighted this issue and proposed memory-bound

functions since memory access speeds vary much less across devices [6]. Memory

100

bound puzzles, unfortunately, are expensive to create and verify [36, 30]. Fur-

thermore, memory-bound puzzles limit the types of computation that can be per-

formed: we envisage a future where puzzles are generic computations whose results

are eventually reusable for solving larger problems like climate modeling, or curing

cancer [128].

MetaCAPTCHA’s approach is to first, determine the puzzle difficulty solely

based on the reputation score — in units of time — and then, continuously issue

puzzles until the client has computed for that pre-determined amount of time.

The advantage of this approach is that it gets rid of an adversary’s incentive to

solve puzzles quicker (e.g by offloading, or parallelizing the computation). What is

needed then, is a formula for converting the reputation score to a puzzle difficulty;

the rest of this section derives such a formula.

Intuitively, the formula must ensure that puzzle difficulty is proportional to the

reputation score since larger scores imply more malicious users. The remaining

questions, then, are (i) how fast should the difficulty grow with respect to the

reputation score?, and (ii) for any given reputation score, what should the difficulty

value be to effectively reduce the amount of spam the web application receives?

The answer to Question (ii) is inspired by work on the impact of proof-of-work

systems on reducing spam by Laurie and Clayton [74]. We begin by fixing the

amount of spam reduction δ the web application seeks as a fraction of the total

number of spam messages sp it receives in time period tp. We can then determine

the maximum difficulty or amount of time tmax a spammer must be kept busy to

reduce the spam to sp − δsp:

tmax =
tp

sp(1− δ)

Notice that if the desired spam reduction δ = 1, the hardest puzzle a spammer

may have to solve would be infinitely long; causing MetaCAPTCHA to forever

wait for a solution! Since this is not feasible, the spam reduction fraction δ must

101

be judiciously chosen. Additionally, the tighter the choice of tp for the same sp, the

more accurate tmax will be. For example, assume a forum receives its first spam

message of the day at 8:00 am and last spam message at 5:00 pm. Then, choosing

tp = 9 hours as opposed to, say 24 hours, will lead to a more accurate value of

tmax.

Now, the answer to question (i) depends on how accurately the reputation

service can determine a user’s reputation score; the more accurate it is, the less

time honest clients should have to spend solving puzzles. We will see later that

MetaCAPTCHA’s reputation service aptly assigns≈ 90% of spammers a score over

0.95. Since the reputation service is fairly accurate, we must fashion a function

that grows slowly until large reputation scores and then steeply afterwards. In

the case of the reference web application used to evaluate MetaCAPTCHA (see

Section 6.8.1), we empirically settled on the exponential function with a growth

constant of 5. However, another web application could choose a different growth

constant based on the shape of the curve desired.

Given the aforementioned growth function and maximum puzzle difficulty tmax,

we can compute the corresponding maximum reputation score rmax:

tmax = e5rmax − 1

=⇒ rmax =
ln(tmax + 1)

5

We can then normalize the user’s current reputation score r with respect to rmax

and subsequently calculate puzzle difficulty t:

t = e5r·rmax − 1

=⇒ t = (tmax + 1)r − 1

Notice that when reputation score r = 1 (most malicious) the puzzle difficulty

t = tmax. Furthermore, when r = 0 (most honest), t = 0. This implies that an

honest user may not have to solve a puzzle at all, whereas a malicious user may

have to solve the hardest one.

102

Issuing Puzzles

Once the puzzle difficulty t is determined, the puzzle service randomly generates

a puzzle based on the list that is configured. The puzzle is then issued to the

client who must solve it and return a solution. If the solution is returned in

time t′ < t, then a new puzzle is chosen and issued. This process is repeated

until the client has computed for at least t amount of time. The idea behind

issuing several puzzles is to ensure that no user can complete an online transaction

unless they have computed for a length of time ≥ t. An alternative is to first

determine how long it takes to solve a puzzle, and then just generate and issue

that puzzle. Unfortunately, the amount of time it takes to solve a puzzle varies

on different platforms, and clients may get issued unfairly long or short puzzles

[6, 39]. For this reason, MetaCAPTCHA first computes puzzle difficulty in units

of time, and then has the client solve puzzles for that amount of time. Also, notice

that the puzzle difficulty t is never revealed to the client, thus, there is no way

to know how long the computation will last. This creates a disincentive for bots

that would normally abandon puzzle computation altogether if t were known to

be large beforehand. An additional advantage of issuing multiple puzzles is that

each one can be randomly chosen, thus, preventing an attacker from being able

to predict the puzzles she will be issued. This eliminates a critical advantage an

adversary normally possesses: offline reverse engineering to find weaknesses. The

next section discusses the various puzzle types supported by MetaCAPTCHA.

Puzzle Types

Essentially, a puzzle type is a parameterized function. A puzzle-type with an

instantiated set of parameters is called a puzzle. Puzzles that require human inter-

action to solve (e.g. CAPTCHA) are called interactive puzzles, while those that

don’t (e.g. proof-of-work), are called non-interactive puzzles. MetaCAPTCHA

103

additionally supports hybrid puzzles that have both an interactive and a proof-

of-work component. The choice of which puzzle types to use depends on the web

application’s needs (See Figure 6.7).

Figure 6.7: MetaCAPTCHA’s puzzle configuration dashboard.

Thus, MetaCAPTCHA is quite flexible and can be easily configured to sup-

port new types of puzzles. In fact, MetaCAPTCHA is so named because it is

a metamorphic puzzle issuing system and because it issues meta-puzzles rather

than specific puzzles. It is metamorphic because the client-side puzzle solver code

is non-deterministic. More specifically, the non-determinism results from issuing

unpredictable puzzles within a generic puzzle solver — the meta-puzzle. Thus, the

adversary has no way to know the client-side MetaCAPTCHA code beforehand.

Furthermore, issuing a meta-puzzle ensures that finding a weakness in one puzzle

type does not compromise MetaCAPTCHA as a whole. As mentioned earlier, a

puzzle can additionally be known or unknown, depending on whether its solution

already known or not. The following paragraphs discuss the currently supported

puzzle types.

104

Hint-based Hash-Reversal (non-interactive) Hash-reversal puzzles force clients

to reverse a given cryptographic hash of a random input, say x, with the k most

significant bits erased. However, they lack fine-grained difficulty control because

increasing k linearly, increases the solution search space exponentially. Hint-based

hash-reversal puzzles address this drawback by providing an additional hint : the

range of values to search.

Targeted Hash-Reversal (non-interactive) A targeted hash-reversal puzzle

[45] with difficulty d forces a client compute an expected number d of hashes before

finding the right answer.

Modified Time-Lock (non-interactive) Time-lock puzzles [108] are based on

repeated squaring, a sequential process that forces the client to compute in a

tight loop for an amount of time that can be precisely controlled. Modified time-

lock puzzles on the other hand, retain most of the original properties of time-lock

puzzles, but are faster to generate and verify [44].

Fish Counting (non-interactive) Requires clients to execute a machine learn-

ing algorithm that counts fishes in an underwater image of a section of Bonneville

Dam [136]. The fish counting algorithm was adapted from an openly available al-

gorithm that detects cats in an image [58]. Verifying the correctness of the solution

involves issuing the same puzzle to multiple users and picking the majority answer

as the correct one. This is similar to the verification mechanism currently used by

reCAPTCHA [53]. The inclusion of this puzzle signifies a first step towards using

MetaCAPTCHA as a platform for issuing proof-of-work puzzles whose solutions

are useful in solving other problems.

CAPTCHA (interactive) A reCAPTCHA [138] or Securimage [99] CAPTCHA

relayed to the client. MetaCAPTCHA only acts as a proxy for these CAPTCHA

105

services.

CAPTCHA+ (hybrid) A CAPTCHA+ puzzle includes a reCAPTCHA or Se-

curimage CAPTCHA along with a modified time-lock puzzle in the background.

The advantage of combining the approaches, in this case, is that changing the

difficulty of the time-lock puzzle changes the cost of solving the CAPTCHA. Con-

sequently, hybrid puzzles could circumvent CAPTCHA outsourcing attacks [90, 91]

since they enable the CAPTCHA solving cost to be changed.

6.6.3 Public API

The public API allows web applications and their clients to access MetaCAPTCHA

services. A web application uses the server-side API to (i) register and maintain

its account with MetaCAPTCHA, and (ii) as described in Section 6.5.1, use the

account’s unique API key to generate puzzle-request tickets for all its clients.

Web application clients implicitly use the client-side API during an online trans-

action, e.g. posting a message. More specifically, the API method calls are em-

bedded in the client-side web page that accepts the online transaction (similar to

a CAPTCHA setup). When the user “submits” the transaction, the client-side

API is used to obtain a puzzle-request ticket from the web application and hand

it over to the MetaCAPTCHA service. Once MetaCAPTCHA returns a puzzle,

the client uses the solver — also a part of the client-side API — to compute and

return the puzzle solution.

6.7 IMPLEMENTATION

MetaCAPTCHA has been deployed and has a public API that can be downloaded

and used by interested parties. A Beta version of the MetaCAPTCHA service can

be found at http://www.metacaptcha.com/metacaptcha/. We now discuss the

implementation details of each MetaCAPTCHA component in Figure 6.6.

106

6.7.1 Reputation Service

The reputation service is implemented in PHP. Associated with this service is a

NoSQL database, MongoDB [5], that stores the feature data necessary to deter-

mine user reputation. Initially, the web application provides the rows of feature

data necessary to train a Naive Bayes classifier implemented in Java by the Weka

[79] library. The trained classifier is then saved and used later when classifying new

messages sent by the web application’s users. Instead of using the binary classifi-

cation — spam or ham — that normally is the output of a Naive Bayes classifier,

the reputation service uses the probability distribution that the classifier deter-

mines in the step before performing the classification. That distribution provides

the percentage likelihood that a given message is spam and this very likelihood

represents MetaCAPTCHA’s reputation score.

To enable the reputation service to compute accurate reputation scores, a web

application can provide existing message and user data for training the classifier.

In the case of our reference web application, a live discussion forum that employed

MetaCAPTCHA’s spam prevention services from September 1st to October 19th

2012, the classifier was given the following feature values for each existing message

in the forum:

• Relative “Thanks” or “Likes”: the proportion of positive votes received by

the sender of the message.

• Language: the language the forum message was written in.

• Relative account age: the proportion of time an account has been alive with

respect to the age of the forum.

• Relative post count: the proportion of total posts published by a given ac-

count.

107

• DShield “Attacks” attribute: number of packets, from the message’s source

to a distinct destination, that were blocked.

• GEOIP: an estimate of the distance between the message poster and forum

server.

• Blacklist score: reputation score of the message source from Spamhaus [130].

The higher the score, the more malicious the source.

• Akismet score: Akismet [10] is a spam detection service that assigns a score

of 1 to a message it thinks is spam and 0 otherwise.

• SA Score: the spam score as determined by the SpamAssassin [120] service

running with only the Bayes plugin. The Bayes plugin uses a Naive Bayes

classifier to determine the probability that the contents of a message resemble

spam. SpamAssasin assigns a spam score between 1 and 5 to each message;

5 indicating that a message is most likely spam and 1 indicating that its not.

• isSpam: “yes” if forum moderator flagged the message as spam, “no” other-

wise.

6.7.2 Puzzle Service

The puzzle service is implemented in PHP. Associated with this service is an in-

stance of the mongoDB [5] that stores credentials necessary to authenticate a

particular web application’s clients, session details while the client is solving the

issued puzzles, and the puzzles themselves. The authentication credentials include

the web application’s 96-bit API key and an application ID; the session details

store the received server ticket (see Sections 6.5.1, 6.5.2) and the amount of time

the client has spent solving puzzles. This amount of time when subtracted from

the puzzle difficulty level determines if the client needs a new sub-puzzle or not

(see Section 6.6.2); the puzzles themselves are stored in the database as members

108

of JSON (JavaScript Object Notation) objects and delivered in that format to

clients. The parsing and execution of these JSON objects by client-side JavaScript

engines can be thought of as “solving” a puzzle.

6.7.3 Client API

The client API includes JavaScript methods to request puzzles from MetaCAPTCHA,

execute or “solve” them, and return the result of the execution. These methods

must be embedded in an HTML form that accepts content from the users on be-

half of the web application. As part of “submitting” that form, the client API will

initiate the MetaCAPTCHA protocol to request a puzzle (see Section 6.5). The

puzzle will be returned as a JSON object that the client must parse, evaluate, and

then return the resulting value to MetaCAPTCHA.

The entire MetaCAPTCHA protocol occurs behind-the-scenes after a user

clicks the “Submit” button. This behind-the-scenes behavior is enabled by the

AJAX (Asynchronous JavaScript and XML) technique used to implement the

MetaCAPTCHA communication protocol. Furthermore, puzzle execution is also

pushed to the background by employing JavaScript worker threads [139] which are

now supported in newer versions of most popular browsers.

6.7.4 Server API

The server API consists of ≈ 150 lines of PHP code and requires minor modi-

fications to the web application for its default configuration. The modifications

are similar to those required by existing CAPTCHA APIs like reCAPTCHA [138].

Web applications use the server API to receive a client’s message, issue the cor-

responding server ticket necessary to request a puzzle from MetaCAPTCHA, and

verify the proof-of-work presented by clients that have solved the issued puzzle

(see Section 6.5).

109

6.8 RESULTS

We now evaluate MetaCAPTCHA and show that its defense-in-depth approach

improves spammer identification, that this identification is accurate, and that it is

an efficient spam prevention service.

6.8.1 Experimental Setup

The experimental setup used in our evaluation includes a MetaCAPTCHA server

with a 2.4 GHz Intel Xeon quad-core processor running Red Hat Linux on a 2.6.18

kernel. A live discussion forum active from September 1st to October 19th 2012

employed MetaCAPTCHA as its spam prevention service. MetaCAPTCHA’s ef-

fectiveness and performance has been evaluated in the context of this forum. At

the time, the forum had 2282 messages from 485 users in 112 sub-forums contain-

ing 997 conversation threads. Upon registration, the forum provided most of this

historical user and message data to help train MetaCAPTCHA’s Naive Bayes clas-

sifier in identifying spam. Since the provided data was considered ground-truth, a

part of it was used to train the classifier and the rest to evaluate it. The classifica-

tion (spam or ham) was then compared with ground-truth to judge the classifier’s

effectiveness. The data consisted of values for all features described in Section 6.7.1

for each of 1442 messages posted to the forum. We now describe the experiments

used to evaluate MetaCAPTCHA.

6.8.2 Defense-in-Depth

Defense-in-depth implies the use of multiple features to determine user reputation

as opposed to only one or a few. Recall that a user’s reputation score is the prob-

ability that the message she is posting is spam. This probability is determined

by the Naive Bayes classifier. If the probability that a message is spam is higher

110

than the probability that it is not, the classifier tags the message as spam. There-

fore, the better the classifier is at identifying spam, the better it is at identifying

spammers and assigning appropriate reputation scores.

Spam Ham
0

0.2

0.4

0.6

0.8

1

0.013

0.935 0.983
DShield
Blacklist
Language
GEOIP
SA Score
Thanks
Account Age
Akismet
Total

F-
M

ea
su

re

Figure 6.8: Defense-in-depth: using multiple features for spam classification is

better than using one or a few. “Total” implies that all-of-the above features were

used for training the classifier.

We evaluated the spam identification accuracy of the classifier by using stan-

dard machine learning techniques. The idea was to measure the classifier’s precision

and recall ; precision is the fraction of messages that are actually spam (or ham)

among those classified as spam (or ham); recall is the fraction of actual spam (or

ham) that gets classified correctly. A commonly used combined metric is the har-

monic mean of precision and recall, called the F-measure. Higher the F-measure,

better the classifier is at identifying spam.

We used 10-fold cross-validation to train and test the classifier on feature data

for 1442 messages. During each train-and-test run we limited the set of features

that the classifier could use. More specifically, in all but the last run, the classifier

was trained on one distinct feature. However, in the last run, it was trained on

111

all features together. The F-measure was then computed and plotted for each of

the runs. We can see in Figure 6.8 that the classifier’s F-measure is largest when

using all features together than when using any single one.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Spammer

Mixed

Non-Spammer

Reputation Score

Pr
ob

ab
ilit

y
0.880.06

(a) Reputation score accuracy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
0.0

0.2

0.4

0.6

0.8

1.0

Spammer

Mixed

Non-Spammer

Puzzle Difficulty (hrs)

Pr
ob

ab
ilit

y

0.14 5.18

(b) Puzzle difficulty accuracy

Figure 6.9: Reputation Accuracy: CDF of reputation scores and puzzle difficulties

assigned to spammers, non-spammers, and mixed users (those that sent at least 1

spam and 1 ham)

112

6.8.3 Reputation Accuracy

We evaluated the accuracy with which MetaCAPTCHA’s reputation service dis-

tinguished between spammers and honest users. To do this, we first divided forum

users into one of three categories, (i) spammers : those who sent only spam, (ii)

non-spammers : those who sent no spam, and (ii) mixed : those who sent both spam

and ham. Here, ’users’ implies the senders of messages included in ground-truth

information provided by the forum. After the categorization, there were 99 mes-

sages sent by non-spammers, 240 messages sent by spammers, and 151 messages

sent by mixed users in the test set (34% of ground-truth data picked uniformly

at random). We then fed these messages to MetaCAPTCHA’s classifier and ex-

tracted the reputation scores from the output (note that reputation scores range

from 0 to 1 and higher scores imply more malicious users). Finally, we plotted a

CDF of reputation scores for each category of users.

Figure 6.9(a) shows that ≈ 90% of spammers have reputation scores over 0.95,

whereas ≈ 99% of non-spammers got a reputation of 0.065 or less. Among the

honest users, only one suffered the ill fate of being assigned a reputation of 0.88,

whereas 94% were assigned a reputation of zero — implying that they did not solve

a puzzle at all!

Interestingly, mixed users were treated largely as non-spammers. To under-

stand why, we further analyzed messages sent by these users and realized that a

majority of the users had posted vastly more ham than spam (see Figure 6.10).

Thus, justifying their lower reputation scores.

Although reputation scores have accurately identified spammers from non-

spammers, MetaCAPTCHA’s success depends on issuing harder puzzles to more

malicious users. This requires evaluating the function that converts reputation

score to puzzle difficulty (see Section 6.6.2). We first computed the maximum

puzzle difficulty tmax = 6.82 hrs based on time period tp = 1 month, number of

spam messages sp seen in that month, and a spam reduction factor δ = 0.6. We

113

1 2 3 4 5 6 7 8 9 10 11 12
0
5

10
15
20
25
30 138 131 141 502Ham

Spam

User

M
es

sa
ge

Po
sts

(c
ou

nt
)

Figure 6.10: Distribution of spam and ham sent by mixed users. Mixed users sent

very little spam (between 1 and 8) when compared to the total messages they

posted. Note: columns that exceeded the y-scale have explicitly marked y-values

then plotted a CDF, shown in Figure 6.9(b), of the difficulty of puzzles issued to

spammers, non-spammers, and mixed users for each message they sent. We can see

that in this scenario, ≈ 90% of spammers solved a puzzle over 6 hrs long, ≈ 5% of

non-spammers solved a puzzle between 7.2 secs and 8.4 minutes long, and ≈ 95%

of non-spammers solved no puzzles at all.

6.8.4 Performance

We evaluated the performance of MetaCAPTCHA in terms of CPU usage, memory

consumption, and time spent in authenticating and issuing puzzles to users. We

used Apache JMeter [126], a Java application that load-tests servers, to generate 1

- 100 concurrent puzzle requests incrementing each time by 20 to MetaCAPTCHA.

Each test run (e.g 1, 20, 40, etc.) was repeated over a 100 times and the average

measurement (e.g CPU usage) was plotted against the number of concurrent con-

nections. The 95% confidence interval for the mean of each measurement was also

calculated. However, the intervals might be too small to spot in the graphs.

114

0 20 40 60 80 100 120
0

1

2

3

Concurrent Connections (count)
Ti

m
e

(s
ec

s)

(a) Time

0 20 40 60 80 100 120
11

12

13

14

15

Concurrent Connections (count)

CP
U

Us
ag

e
(%

)

(b) CPU usage

0 20 40 60 80 100 120
0

0.5
1

1.5
2

2.5

Concurrent Connections (count)

M
em

or
y

Us
ag

e
(M

B)

(c) Memory used

Figure 6.11: Performance overhead of MetaCAPTCHA when issuing the first puz-

zle.

Figures 6.11(a) - 6.11(c) show the amount of time, CPU, and memory con-

sumed to authenticate the user, determine reputation score and puzzle difficulty,

and generate the first puzzle. Although the time consumed was not prohibitive,

115

we were interested in determining where most of it was used. A more detailed

analysis, shown in Figure 6.12, revealed that a majority of the time was spent in

the reputation service when querying other remote services like Akismet [10], and

blacklists like Spamhaus [130].

68 2

30 Reputation Service
Authentication
Puzzle Generation

Figure 6.12: Breakdown (%) of the time spent in issuing the first puzzle. Notice

that 68% of the time is spent in the reputation service due to all the remote queries

that happen there.

In the future, we hope to eliminate remote queries and mirror the applicable

blacklists to significantly reduce the time required for issuing the first puzzle. Note

that after the first puzzle, issuing subsequent ones only requires generating a new

random puzzle (without the need for computing puzzle difficulty, or authenticating

the user). Figures 6.13(a) - 6.13(c) depict the resources consumed while issuing

subsequent puzzles.

6.9 SECURITY ANALYSIS

MetaCAPTCHA’s goal is to address threats from automated adversaries like spam

bots. The following paragraphs discuss those threats and how MetaCAPTCHA

defends against them.

116

0 20 40 60 80 100 120
0

0.005

0.01

0.015

Concurrent Connections (count)
Ti

m
e

(s
ec

s)

(a) Time

0 20 40 60 80 100 120
0

5

10

15

Concurrent Connections (count)

CP
U

Us
ag

e
(%

)

(b) CPU usage

0 20 40 60 80 100 120
0

0.1

0.2

0.3

Concurrent Connections (count)

M
em

or
y

Us
ag

e
(M

B)

(c) Memory used

Figure 6.13: MetaCAPTCHA performance overhead when issuing subsequent puz-

zles.

Bots may attempt to post spam in the web application. However, with Meta-

CAPTCHA protections in place, those attempts will result in a puzzle-request-

ticket. Thus, preventing any efforts to directly post spam.

117

Bots may attempt to show proof-of-work without ever doing the work. However,

they will be unable to forge a proof-of-work-ticket without the web application’s

secret API key.

Bots could present a proof-of-work-ticket for one message, but try to post an-

other. However, since proof-of-work-tickets contain a digest of the original message,

the ticket’s verification will fail when associated with a new message.

Bots could replay old proof-of-work-tickets. However, as mentioned in Section

6.5.2, clients only have a small amount of time tdiff to submit the proof-of-work

ticket. Thus, the same ticket cannot be replayed after tdiff time.

Bots could find short-cut methods to solve puzzles. However, since Meta-

CAPTCHA forces adversaries to solve puzzles for a pre-determined amount of

time (the puzzle difficulty), solving a puzzle faster will only result in more puzzles

to solve.

Bots may attempt to reuse the solutions of puzzles solved in the past. Recall,

that puzzles are randomly selected and parameterized before being issued. Thus,

bots will have to store an old puzzle in hopes of finding an exact match sometime

in the future. We conjecture that this probability is negligible for the types of

puzzles currently supported.

MetaCAPTCHA could be the target of a DoS attack where a flood of puzzle

requests cause it to create state for an unsustainable number of puzzle solving

sessions. However, effects of such attacks can be mitigated by using puzzle out-

sourcing techniques [142].

MetaCAPTCHA determines a user’s reputation based on information related

to messages posted by that user (e.g. contents, source IP). This may be a privacy

concern for those who may trust the web application with their messages, but

not MetaCAPTCHA. A possible solution to this problem is to eliminate privacy-

sensitive features from being used for determining reputation. The drawback,

however, would be reduced reputation score accuracy. Another way, would be

118

to empower the application to provide a local reputation score based on privacy-

sensitive features. This local score could then be combined with the one determined

remotely by MetaCAPTCHA to provide an accurate characterization of reputation.

We hope to explore these avenues in future research.

Currently, MetaCAPTCHA issues puzzles without considering the platform

it will be solved on. Thus, some clients may solve puzzles for longer than the

amount of time determined by MetaCAPTCHA. One possibility is to use browser

fingerprinting techniques [92] to determine a client’s CPU speed and then issue

puzzles accordingly. We also hope to address this direction of research in future

work.

6.10 RELATED WORK

This section discusses relevant spam prevention schemes and how they relate to

MetaCAPTCHA: the two prevalent ones are CAPTCHAs and proof-of-work [59].

CAPTCHAs come in many shapes and forms: textual CAPTCHAs require

users to identify distorted letters [138, 99], visual CAPTCHAs require users to

identify the content or characteristics of an image (e.g. orientation [54]), and

audio CAPTCHAs usually require users to identify words in a noisy environment

[118]. However, CAPTCHAs are not always fun to solve, so systems like Mollom

[86] selectively issue them to only those users that appear to be posting spam.

CAPTCHAs have also helped digitize books: words in scanned books that cannot

be deciphered by character recognition programs are used as reCAPTCHAs [138].

MetaCAPTCHA can incorporate the above CAPTCHAs with the added benefit

of a difficulty setting.

Proof-of-work systems that discourage spam include Hashcash, a system that

requires senders to attach “postage” to e-mail [15]. The postage is a partial hash

collision on a string derived from the recipient’s email address. Another proof-

of-work solution for throttling email spam was presented by Zhong et al. [149].

119

However, unlike Hashcash, their system based puzzle difficulty on the “spammi-

ness” of the message. Feng et al. proposed kaPoW [44], a reputation-based proof-

of-work system to discourage spam in webmail. There have also been proposals

to put proof-of-work to good use. Jakobsson and Juels first suggested reusing

the solutions to proof-of-work puzzles [64]. They described how a coin-minting

operation could be broken up into several proof-of-work puzzles. CloudFlare [55]

recently proposed using collaborative distributed computations like protein fold-

ing [128] as proof-of-work puzzles. MetaCAPTCHA incorporates the features of

above proof-of-work systems while augmenting them with a generic puzzle issu-

ing and verification mechanism along with a comprehensive reputation service.

Furthermore, MetaCAPTCHA can be easily configured and used by generic web

applications.

6.11 CONCLUSION AND FUTURE WORK

We presented MetaCAPTCHA, an application-agnostic spam prevention service

for the web. MetaCAPTCHA seamlessly integrates the CAPTCHA and proof-of-

work approaches while augmenting each: it can dynamically issue proof-of-work

or CAPTCHA puzzles while ensuring that malicious users solve much “harder”

puzzles than honest users. Web applications can configure MetaCAPTCHA to

issue different classes of puzzles and even add new ones; regardless of whether

there are short-cut methods to check their solutions. A configurable library of

puzzles also ensures that weaknesses in one class of puzzles won’t compromise

MetaCAPTCHA as a whole. We evaluated MetaCAPTCHA in the context of

a reference web application and showed that 95% of honest users hardly notice

MetaCAPTCHA’s presence, whereas the remaining 5% were required to solve very

“easy” puzzles before accessing the application’s services. In the future, we hope

to improve MetaCAPTCHA’s reputation system by incorporating new spam clas-

sification algorithms. Additionally, we would like to work towards transforming

120

MetaCAPTCHA into a proxy for volunteer computing projects like BOINC [20], so

that useful computations like protein folding [128] can be issued as proof-of-work

puzzles.

121

Chapter 7

CONCLUSION

Online applications that encourage open participation remain vulnerable to spu-

rious information. This dissertation presented the trust-but-verify approach, a

framework that enables applications to determine the integrity of the received in-

formation and thereby reject information that is spurious. The trust-but-verify

approach enables applications to independently verify the integrity of data pub-

lished by each user, and do so as often as necessary. This, in turn, enables the

application to verify less information from a participant it trusts more, and ver-

ify more information from a participant it trusts less. How much of the received

information is checked, depends on how tolerant the application is to spurious

information and the resources it can devote to integrity checking. Thus, an appli-

cation can trade-off performance for more integrity, or vice versa. The key idea

behind the trust-but-verify approach is that it first identifies or defines data gen-

eration functions that data sources will use to create and publish information, and

then, enables the respective application to verify that the data generation func-

tions were faithfully executed. The challenge is in building verification methods

that satisfy the constraints of individual applications. This dissertation described

how the trust-but-verify approach can be used to enable high-integrity privacy-

preserving crowd-sourced sensing, non-intrusive cheat detection in online games,

and effective spam prevention in online messaging applications.

122

7.1 FUTURE DIRECTIONS

This dissertation developed verification procedures for information received in spe-

cific applications. However, a future area of research is to develop general verifica-

tion procedures for entire classes of applications. Also, the trust-but-verify model

currently assumes a single intermediary aggregator. In the future, it will be useful

to evaluate the trust-but-verify approach in a model where there are multiple ag-

gregators accepting data from multiple overlapping sources. Another interesting

avenue for future research, is the feasibility of using the trust-but-verify approach

in “big data” systems.

7.2 CONTRIBUTION SUMMARY

Table 7.1 highlights the contributions of the trust-but-verify approach in crowd-

sourced sensing applications, online games, and spam prevention systems.

App. Domain Threats State-of-art Our Approach

Crowd-sourced

sensing

Integrity: mas-

querading, data

fabrication;

Privacy: loca-

tion exposure

Reputation rankings: not

resistant to masquerading

(a.k.a Sybil) attacks, no

privacy

Per-participant root-of-

trust + Private data

verification using homo-

morphic commitments

Online games Information ex-

posure cheats

Server-side view tracking:

too expensive

Client tracks view, server

checks view

Spam preven-

tion systems

spam spam filters: don’t reduce

spam;

CAPTCHA: can be

fooled, can’t protect

hijacked accounts

impose cost per message:

force adversary to solve a

puzzle whose result is use-

ful to another application

Table 7.1: Contribution Summary

123

References

[1] 10-ways-to-detect-a-fake-facebook-account. https://www.facebook.com/

notes/k-care-shop/10-ways-to-detect-a-fake-facebook-account/

480043898294.

[2] Facebook. http://www.facebook.com/.

[3] Wikipedia. http://www.wikipedia.com/.

[4] Wikipedia:Identifying reliable sources - Wikipedia, the free ency-

clopedia. http://en.wikipedia.org/wiki/Wikipedia:Identifying_

reliable_sources.

[5] I. 10gen. Mongodb. http://www.mongodb.org/.

[6] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard,

memory-bound functions. ACM Transactions on Internet Technology

(TOIT), 5(2):299–327, 2005. Presents a set of memory-bound functions that

can be used as client puzzles.

[7] A. Abdul-Rahman and S. Hailes. A distributed trust model. In Proceedings

of the 1997 workshop on New security paradigms, pages 48–60. ACM, 1998.

[8] Advanced Micro Devices. SVM: AMD’s Virtualization Technology. www.

xen.org/files/xs0106_amd_virtualization.pdf.

[9] E. Agapie, G. Chen, D. Houston, E. Howard, J. Kim, M. Mun, A. Mond-

schein, S. Reddy, R. Rosario, J. Ryder, et al. Seeing Our Signals: Combining

124

location traces and web-based models for personal discovery. In Proceedings

of HotMobile, pages 6–10. ACM, 2008.

[10] Akismet. Comment spam prevention for your blog. http://akismet.com/.

[11] Alex Chitu, Google Operating System, Unofficial news and tips about

Google. How Gmail Blocks Spam. http://googlesystem.blogspot.com/

2007/10/how-gmail-blocks-spam.html, Oct 2007.

[12] Artek72. [Undetected] SC2MapPro - An External Map Hack/Bot. http:

//www.blizzhackers.cc/viewtopic.php?f=220&t=473310.

[13] Atmel Corporation. The Atmel Trusted Platform Module. www.atmel.com/

dyn/resources/prod_documents/doc5128.pdf.

[14] A. Back. Hashcash faq. http://www.hashcash.org/faq/.

[15] A. Back et al. Hashcash-a denial of service counter-measure. URL:

http://www. hashcash. org/papers/hashcash. pdf, 2002.

[16] N. Baughman and B. Levine. Cheat-proof playout for centralized and dis-

tributed online games. In IEEE INFOCOM 2001. Twentieth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceed-

ings, volume 1, 2001.

[17] Bitcoin. Bitcoin - P2P digital currency. http://bitcoin.org/.

[18] Blizzard Entertainment Inc. StarCraft II. http://us.battle.net/sc2/en/.

[19] Blizzard Entertainment Inc. World of Warcraft. http://us.battle.net/

wow/en/.

[20] BOINC. BOINC. http://boinc.berkeley.edu/.

125

[21] D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. LECTURE

NOTES IN COMPUTER SCIENCE, pages 41–55, 2004.

[22] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In

Proceedings of the 11th ACM conference on Computer and communications

security, pages 132–145. ACM, 2004.

[23] Bruce Schneier. Palladium and the TCPA. http://www.schneier.com/

crypto-gram-0208.html#1.

[24] Caroline Ghiossi. Explaining Facebook Spam Prevention Systems. https:

//blog.facebook.com/blog.php?post=403200567130, June 2010.

[25] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggregation of en-

crypted data in wireless sensor networks. In Mobile and Ubiquitous Systems:

Networking and Services, 2005. MobiQuitous 2005. The Second Annual In-

ternational Conference on, pages 109–117. IEEE, 2005.

[26] V. Chatzigiannakis and S. Papavassiliou. Diagnosing anomalies and identi-

fying faulty nodes in sensor networks. Sensors Journal, IEEE, 7(5):637–645,

2007.

[27] D. Chaum, I. Damg̊ard, and J. van de Graaf. Multiparty computations en-

suring privacy of each partys input and correctness of the result. In Advances

in Cryptology, pages 87–119. Springer, 1987.

[28] D. Chaum and E. Van Heyst. Group Signatures. Berlin: Springer-Verlag,

265, 1991.

[29] N. Chitradevi, V. Palanisamy, K. Baskaran, and U. Nisha. Outlier aware

data aggregation in distributed wireless sensor network using robust prin-

cipal component analysis. In Computing Communication and Networking

Technologies (ICCCNT), 2010 International Conference on, pages 1–9, 2010.

126

[30] F. Coelho. Exponential memory-bound functions for proof of work protocols.

Technical report, Research Report A-370, CRI, École des mines de Paris,

2005.

[31] S. Consolvo, D. McDonald, T. Toscos, M. Chen, J. Froehlich, B. Harrison,

P. Klasnja, A. LaMarca, L. LeGrand, R. Libby, et al. Activity sensing in

the wild: a field trial of ubifit garden. In Proceeding of the twenty-sixth

annual SIGCHI conference on Human factors in computing systems, pages

1797–1806. ACM, 2008.

[32] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. Unique

in the crowd: The privacy bounds of human mobility. Scientific reports, 3,

2013.

[33] D. Dean and A. Stubblefield. Using client puzzles to protect tls. In Proceed-

ings of the 10th USENIX Security Symposium, pages 13–17, 2001.

[34] R. Dewri. Location privacy and attacker knowledge: Who are we fighting

against? 2011.

[35] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation

onion router. In USENIX Security, pages 21–21. USENIX Association,

Berkeley, CA, USA, 2004.

[36] S. Doshi, F. Monrose, and A. D. Rubin. Efficient memory bound puzzles

using pattern databases. In Applied Cryptography and Network Security,

pages 98–113. Springer, 2006.

[37] J. Douceur. The Sybil Attack. In Proceedings of the IPTPS workshop.

Springer, 2002.

[38] A. Dua, N. Bulusu, W. Feng, and W. Hu. Towards Trustworthy Participatory

127

Sensing. In HotSec’09: Proceedings of the 4th USENIX Workshop on Hot

Topics in Security. USENIX Association Berkeley, CA, USA, 2009.

[39] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for

fighting spam. Advances in Cryptology-Crypto 2003, pages 426–444, 2003.

[40] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In

Advances in CryptologyCRYPTO92, pages 139–147. Springer, 1993.

[41] EBay. Electronics, Cars, Fashion, Collectibles, Coupons and More Online

Shopping — eBay. http://www.ebay.com/.

[42] S. Eisenman, E. Miluzzo, N. Lane, R. Peterson, G. Ahn, and A. Campbell.

The BikeNet mobile sensing system for cyclist experience mapping. In Pro-

ceedings of the 5th international conference on Embedded networked sensor

systems, pages 87–101. ACM, 2007.

[43] D. Estrin. Participatory sensing: applications and architecture [Internet

Predictions. IEEE Internet Computing, 14(1):12–42, Jan. 2010.

[44] W. Feng and E. Kaiser. kapow webmail: Effective disincentives against spam.

Proc. of 7th CEAS, 2010.

[45] W.-c. Feng and E. Kaiser. The case for public work. In IEEE Global Internet

Symposium, 2007, pages 43–48. IEEE, 2007.

[46] W.-c. Feng, E. Kaiser, and A. Luu. Design and implementation of net-

work puzzles. In INFOCOM 2005. 24th Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings IEEE, vol-

ume 4, pages 2372–2382. IEEE, 2005.

128

[47] A. Francillon and C. Castelluccia. Code injection attacks on harvard-

architecture devices. In Proceedings of the 15th ACM conference on Com-

puter and communications security, pages 15–26. ACM New York, NY, USA,

2008.

[48] S. Ganeriwal, L. Balzano, and M. Srivastava. Reputation-based framework

for high integrity sensor networks. ACM Transactions on Sensor Networks

(TOSN), 4(3):15, 2008.

[49] R. Ganti, N. Pham, Y. Tsai, and T. Abdelzaher. PoolView: stream privacy

for grassroots participatory sensing. In Proceedings of ACM SenSys, pages

281–294, Raleigh, North Carolina, 2008. ACM.

[50] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A

virtual machine-based platform for trusted computing. ACM SIGOPS Op-

erating Systems Review, 37(5):206, 2003.

[51] Geoffrey A. Fowler, Shayndi Raice, Amir Efrati. Facebook, Twitter

battle ’social’ spam. http://www.theaustralian.com.au/business/

wall-street-journal/facebook-twitter-battle-social-spam/

story-fnay3ubk-1226237108998, Jan 2012.

[52] A. Gkoulalas-Divanis, P. Kalnis, and V. S. Verykios. Providing k-anonymity

in location based services. ACM SIGKDD Explorations Newsletter, 12(1):3–

10, 2010.

[53] Google. recaptcha: Stop spam, read books. http://www.google.com/

recaptcha.

[54] R. Gossweiler, M. Kamvar, and S. Baluja. What’s up captcha?: a captcha

129

based on image orientation. In Proceedings of the 18th international confer-

ence on World wide web, WWW ’09, pages 841–850, New York, NY, USA,

2009. ACM.

[55] J. Graham-Cumming. Turning ”i’m under attack” into

”i’m doing some good”. http://blog.cloudflare.com/

turning-im-under-attack-into-im-doing-some-go, Aug 2012.

[56] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: the underground

on 140 characters or less. In Proceedings of the 17th ACM conference on

Computer and communications security, CCS ’10, pages 27–37, New York,

NY, USA, 2010. ACM.

[57] M. Gruteser and D. Grunwald. Anonymous usage of location-based services

through spatial and temporal cloaking. In Proceedings of the 1st international

conference on Mobile systems, applications and services, pages 31–42. ACM,

2003.

[58] Heather Arthur. Face detection for cats in javascript. https://github.com/

harthur/kittydar.

[59] P. Heymann, G. Koutrika, and H. Garcia-Molina. Fighting spam on social

web sites: A survey of approaches and future challenges. Internet Computing,

IEEE, 11(6):36–45, 2007.

[60] W. Hu, P. Corke, W. C. Shih, and L. Overs. secfleck: A public key technology

platform for wireless sensor networks. In Proceedings of EWSN, pages 296–

311, Cork, Ireland, 2009.

[61] K. L. Huang, S. S. Kanhere, and W. Hu. Towards privacy-sensitive par-

ticipatory sensing. In Percom’09: International Conference on Pervasive

Computing and Communications, pages 1–6. IEEE, 2009.

130

[62] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,

H. Balakrishnan, and S. Madden. Cartel: a distributed mobile sensor com-

puting system. In Proceedings of ACM SenSys, pages 125–138, Boulder,

Colorado, 2006. ACM.

[63] Intel Corporation. Intel Trusted Execution Technology. http://www.intel.

com/technology/security/.

[64] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In

Communications and Multimedia Security, pages 258–272, 1999.

[65] I. Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[66] A. Jsang and R. Ismail. The beta reputation system. In Proceedings of the

15th bled electronic commerce conference, pages 41–55, 2002.

[67] A. Juels and J. Brainard. Client puzzles: A cryptographic countermeasure

against connection depletion attacks. NDSS, 1999.

[68] E. Kaiser and W. Feng. Helping ticketmaster: Changing the economics of

ticket robots with geographic proof-of-work. In INFOCOM IEEE Conference

on Computer Communications Workshops, 2010, pages 1–6. IEEE, 2010.

[69] E. Kaiser, W. Feng, and T. Schluessler. Fides: Remote anomaly-based cheat

detection using client emulation. In Proceedings of the 16th ACM conference

on Computer and communications security, pages 269–279. ACM, 2009.

[70] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preventing location-

based identity inference in anonymous spatial queries. Knowledge and Data

Engineering, IEEE Transactions on, 19(12):1719–1733, 2007.

[71] A. Kapadia, N. Triandopoulos, C. Cornelius, D. Peebles, and D. Kotz.

AnonySense: Opportunistic and Privacy Preserving Context Collection.

LNCS, 5013:280, 2008.

131

[72] Kelly Jackson Higgins for Dark Reading. Smartphone Weather App Builds A

Mobile Botnet. http://www.darkreading.com/insiderthreat/security/

client/showArticle.jhtml?articleID=223200001.

[73] J. Krumm. Inference Attacks on Location Tracks. In Proceedings of the Fifth

International Conference on Pervasive Computing (Pervasive), volume 4480,

pages 127–143. Citeseer, 2007.

[74] B. Laurie and R. Clayton. Proof-of-work proves not to work. In The Third

Annual Workshop on Economics and Information Security, 2004.

[75] K. Li, S. Ding, D. McCreary, and S. Webb. Analysis of state exposure control

to prevent cheating in online games. Proceedings of the 14th international

workshop on Network and operating systems support for digital audio and

video - NOSSDAV ’04, page 140, 2004.

[76] Z. Liang and W. Shi. Analysis of ratings on trust inference in open environ-

ments. Performance Evaluation, 65(2):99–128, 2008.

[77] D. Liu and L. Camp. Proof of work can work. In Fifth Workshop on the

Economics of Information Security, 2006.

[78] M. Livani and M. Abadi. Distributed pca-based anomaly detection in wireless

sensor networks. In Internet Technology and Secured Transactions (ICITST),

2010 International Conference for, pages 1–8, 2010.

[79] Machine Learning Group, University of Waikato. Weka 3 – data mining with

open source machine learning software in java. http://www.cs.waikato.

ac.nz/ml/weka/.

[80] Mark Risher. Social Spam and Abuse — Annual

Trend Review. http://blog.impermium.com/2012/01/13/

social-spam-and-abuse-the-year-in-review/, Jan 2012.

132

[81] Mark Ward. Warcraft game maker in spying row. http://news.bbc.co.

uk/2/hi/technology/4385050.stm, Oct 2005.

[82] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker: An

execution infrastructure for TCB minimization. In Proceedings of ACM

SIGOPS/EuroSys, pages 315–328, Glasgow, Scotland, 2008. ACM.

[83] S. Miller II. Beyond the hype of OnLive. http://www.jsonline.com/blogs/

entertainment/41834997.html, Mar 2009.

[84] A. Modine. World of Warcraft spykit gets encrypted. http:

//www.theregister.co.uk/2007/11/15/world_of_warcraft_warden_

encryption/, Nov 2007. The Register.

[85] M. Mokbel, C. Chow, and W. Aref. The new casper: query processing for

location services without compromising privacy. In Proceedings of the 32nd

international conference on Very large data bases, pages 763–774. VLDB

Endowment, 2006.

[86] Mollom. How mollom works — mollom. http://mollom.com/

how-mollom-works.

[87] C. Mönch, G. Grimen, and R. Midtstraum. Protecting online games against

cheating. Proceedings of 5th ACM SIGCOMM workshop on Network and

system support for games - NetGames ’06, page 20, 2006.

[88] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the

clustering properties of the hilbert space-filling curve. Knowledge and Data

Engineering, IEEE Transactions on, 13(1):124–141, 2001.

[89] T. Moran. The qilin crypto sdk. http://qilin.seas.harvard.edu/.

133

[90] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and

S. Savage. Re: Captchas–understanding captcha-solving services in an eco-

nomic context. In USENIX Security Symposium, volume 10, 2010.

[91] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M. Voelker. Dirty

jobs: The role of freelance labor in web service abuse. In Proceedings of the

20th USENIX conference on Security, pages 14–14. USENIX Association,

2011.

[92] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Fingerprinting infor-

mation in javascript implementations. In Proceedings of Web, volume 2,

2011.

[93] S. Nath, J. Liu, J. Miller, F. Zhao, and A. Santanche. SensorMap: a web

site for sensors world-wide. In Proceedings of ACM SenSys, pages 373–374.

ACM Press New York, NY, USA, 2006.

[94] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Advances in cryptologyEUROCRYPT99, pages 223–238. Springer,

1999.

[95] S. U. Pande Lab. Folding@home. http://folding.stanford.edu/.

[96] E. Paulos, R. Honicky, and E. Goodman. Sensing atmosphere. In Workshop

on Sensing on Everyday Mobile Phones in Support of Participatory Research.

Citeseer, 2007.

[97] E. Paulos, I. Smith, and R. Honicky. Participatory urbanism. http://www.

urban-atmospheres.net/ParticipatoryUrbanism/index.html.

[98] T. Pedersen. Non-interactive and information-theoretic secure verifiable

secret sharing. In Advances in CryptologyCRYPTO91, pages 129–140.

Springer, 1992.

134

[99] D. Phillips. Securimage php captcha — free captcha script. http://www.

phpcaptcha.org/.

[100] R. Popa, H. Balakrishnan, and A. Blumberg. VPriv: Protecting privacy in

location-based vehicular services. In Proceedings of the 18th Usenix Security

Symposium, 2009.

[101] R. Popa, A. Blumberg, H. Balakrishnan, and F. Li. Privacy and accountabil-

ity for location-based aggregate statistics. In Proceedings of the 18th ACM

conference on Computer and communications security, pages 653–666. ACM,

2011.

[102] M. Pritchard. How to Hurt the Hackers:The Scoop on Internet Cheat-

ing and How You Can Combat It. http://www.gamasutra.com/view/

feature/3149/how_to_hurt_the_hackers_the_scoop_.php?page=3, July

2000. Gamasutra The Art & Business of Making Games.

[103] B. Przydatek, D. Song, and A. Perrig. SIA: Secure Information Aggregation

in Sensor Networks. In Proceedings of ACM SenSys, pages 255–265. ACM

New York, NY, USA, 2003.

[104] M. Rassam, A. Zainal, and M. Maarof. One-class principal component clas-

sifier for anomaly detection in wireless sensor network. In Computational

Aspects of Social Networks (CASoN), 2012 Fourth International Conference

on, pages 271–276, 2012.

[105] V. Rastogi and S. Nath. Differentially private aggregation of distributed

time-series with transformation and encryption. In Proceedings of the 2010

international conference on Management of data, pages 735–746. ACM, 2010.

[106] S. Reddy, A. Parker, J. Hyman, J. Burke, D. Estrin, and M. Hansen. Image

browsing, processing, and clustering for participatory sensing: lessons from

135

a DietSense prototype. In ACM SenSys, pages 13–17, Cork, Ireland, 2007.

ACM.

[107] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation

systems. Communications of the ACM, 43(12):45–48, 2000.

[108] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-

release crypto. 1996.

[109] Ross Anderson. ’Trusted Computing’ Frequently Asked Questions. http:

//www.cl.cam.ac.uk/~rja14/tcpa-faq.html.

[110] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and implementa-

tion of a TCG-based integrity measurement architecture. In Proceedings of

USENIX Security, pages 223–238, 2004.

[111] P. Samarati and L. Sweeney. Protecting privacy when disclosing information:

k-anonymity and its enforcement through generalization and suppression.

Technical report, Technical report, SRI International, 1998.

[112] M. Schramm. Blizzard’s new Warden, and our privacy. http://wow.

joystiq.com/2007/11/15/blizzards-new-warden-and-our-privacy/,

Nov 2007. WoW Insider.

[113] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer:

verifying code integrity and enforcing untampered code execution on legacy

systems. Proceedings of ACM SIGOPS, 39(5):1–16, 2005.

[114] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. Swatt: Software-based

attestation for embedded devices. In Proceedings of IEEE Symposium on

Security and Privacy, pages 272–282. Citeseer, 2004.

136

[115] E. Shi, T. H. Chan, E. Rieffel, R. Chow, and D. Song. Privacy-preserving

aggregation of time-series data. In Proceedings of NDSS, volume 17, 2011.

[116] J. Shi, R. Zhang, Y. Liu, and Y. Zhang. PriSense: Privacy-Preserving Data

Aggregation in People-Centric Urban Sensing Systems. In IEEE INFOCOM,

2010.

[117] P. Sikka, P. Corke, L. Overs, P. Valencia, and T. Wark. Fleck: A platform for

real-world outdoor sensor networks. In Intelligent Sensors, Sensor Networks

and Information, 2007. ISSNIP 2007. 3rd International Conference on, pages

709–714, 2007.

[118] Y. Soupionis and D. Gritzalis. Audio captcha: Existing solutions assess-

ment and a new implementation for voip telephony. Computers & Security,

29(5):603–618, 2010.

[119] SPAM LAWS. Spam Statistics and Facts. http://www.spamlaws.com/

spam-stats.html, 2011.

[120] SpamAssassin. The apache spamassassin project. http://spamassassin.

apache.org/.

[121] spamcop.net. SpamCop.net: Beware of cheap imitations. http://www.

spamcop.net/.

[122] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for

ad-hoc wireless networks. Lecture Notes in Computer Science, 1796:172–182,

2000.

[123] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An authentication

service for open network systems. In USENIX conference proceedings, volume

191, page 202, 1988.

137

[124] O. R. Team. List of weaknesses. http://ocr-research.org.ua/list.html.

[125] J. Thaler. WardenNet. http://www.ismods.com/warden/wardenfaq.php.

[126] The Apache Software Foundation. Apache jmeter. http://jmeter.apache.

org/.

[127] The Common Criteria Recognition Agreement. CCRA - The Common Cri-

teria Portal. http://www.commoncriteriaportal.org/.

[128] The Economist. Spreading the Load. http://www.economist.com/node/

10202635, Dec 2007.

[129] The H. Security. Hacker extracts crypto key from TPM

chip. http://www.h-online.com/security/news/item/

Hacker-extracts-crypto-key-from-TPM-chip-927077.html, Feb 2010.

[130] The Spamhaus Project. About the Spamhaus Project. http://www.

spamhaus.org/organization/index.lasso.

[131] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan,

S. Toledo, and J. Eriksson. VTrack: accurate, energy-aware road traffic delay

estimation using mobile phones. In Proceedings of the 7th ACM Conference

on Embedded Networked Sensor Systems, pages 85–98. ACM, 2009.

[132] Trusted Computing Group. About TCG. http://www.

trustedcomputinggroup.org/about_tcg.

[133] Trusted Computing Group. Platform Reset Attack Mitigation

Specification, Version 1.0. http://www.trustedcomputinggroup.

org/resources/pc_client_work_group_platform_reset_attack_

mitigation_specification_version_10/.

138

[134] Trusted Computing Group. Trusted Platform Modue (TPM) Specifica-

tions. http://www.trustedcomputinggroup.org/developers/trusted_

platform_module/specifications.

[135] Twitter Help Center. How to Report Spam on Twitter. http://support.

twitter.com/articles/64986-how-to-report-spam-on-twitter.

[136] US Army Corps of Engineers. Bonneville lock and dam. http://www.nwp.

usace.army.mil/Locations/ColumbiaRiver/Bonneville.aspx.

[137] J. Vilches. OnLive gets demoed, lag is a problem. http://www.techspot.

com/news/37697-onlive-gets-demoed-lag-is-a-problem.html, Jan

2010.

[138] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. re-

captcha: Human-based character recognition via web security measures. Sci-

ence, 321(5895):1465, 2008.

[139] w3schools.com. Html5 web workers. http://www.w3schools.com/html/

html5_webworkers.asp.

[140] X. Wang and M. Reiter. Defending against denial-of-service attacks with

puzzle auctions. In Security and Privacy, 2003. Proceedings. 2003 Symposium

on, pages 78–92. IEEE, 2003.

[141] X. Wang and M. K. Reiter. Mitigating bandwidth-exhaustion attacks using

congestion puzzles. In Proceedings of the 11th ACM conference on Computer

and communications security, pages 257–267. ACM, 2004.

[142] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New client puzzle

outsourcing techniques for dos resistance. In Proceedings of the 11th ACM

conference on Computer and communications security, CCS ’04, pages 246–

256, New York, NY, USA, 2004. ACM.

139

[143] Waze. Free GPS Navigation with Turn by Turn Directions. http://www.

waze.com/homepage/.

[144] S. D. Webb and S. Soh. Cheating in networked computer games. Proceedings

of the 2nd international conference on Digital interactive media in entertain-

ment and arts - DIMEA ’07, page 105, 2007.

[145] S. Webb, S. and Soh. A survey on network game cheats and P2P solutions.

Australian Journal of Intelligent Information, 9(4):34–43, 2008.

[146] S. B. Wicker. The loss of location privacy in the cellular age. Communications

of the ACM, 55(8):60–68, 2012.

[147] J. Yan and A. El Ahmad. Usability of captchas or usability issues in captcha

design. In Proceedings of the 4th symposium on Usable privacy and security,

pages 44–52. ACM, 2008.

[148] H. Zang and J. Bolot. Anonymization of location data does not work: A

large-scale measurement study. In Proceedings of the 17th annual interna-

tional conference on Mobile computing and networking, pages 145–156. ACM,

2011.

[149] Z. Zhong, K. Huang, and K. Li. Throttling outgoing spam for webmail

services. In Conference on Email and Anti-Spam, 2005.

[150] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved hop-by-hop au-

thentication scheme for filtering of injected false data in sensor networks. In

Proceedings of IEEE Symposium on Security and Privacy, pages 259–271,

2004.

	Portland State University
	PDXScholar
	Fall 9-26-2013

	Trust-but-Verify: Guaranteeing the Integrity of User-generated Content in Online Applications
	Akshay Dua
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1380763038.pdf.nKMa9

