
Given Enough Eyeballs, All Bugs Are Shallow?
Revisiting Eric Raymond with Bug Bounty Programs

Thomas Maillart1, Mingyi Zhao2, Jens Grossklags2, and John Chuang1

1 University of California, Berkeley
School of Information

102 South Hall
Berkeley, CA 94720

2 The Pennsylvania State University
College of Information Science and Technology

329A Information Sciences and Technology Building
University Park, PA 16802

Abstract. Bug bounty programs offer a modern platform for organizations to
crowdsource their software security and for security researchers to be fairly re-
warded for the vulnerabilities they find. Little is known however on the incentives
set by bug bounty programs: How they drive new bug discoveries, and how they
supposedly improve security through the progressive exhaustion of discoverable
vulnerabilities. Here, we recognize that bug bounty programs create tensions, for
organizations running them on the one hand, and for security researchers on the
other hand. At the level of one bug bounty program, security researchers face a
sort of St-Petersburg paradox: The probability of finding additional bugs decays
fast, and thus can hardly be matched with a sufficient increase of monetary re-
wards. Furthermore, bug bounty program managers have an incentive to gather
the largest possible crowd to ensure a larger pool of expertise, which in turn
increases competition among security researchers. As a result, we find that re-
searchers have high incentives to switch to newly launched programs, for which
a reserve of low-hanging fruit vulnerabilities is still available. Our results in-
form on the technical and economic mechanisms underlying the dynamics of bug
bounty program contributions, and may in turn help improve the mechanism de-
sign of bug bounty programs that get increasingly adopted by cybersecurity savvy
organizations.

1 Introduction

On March 2nd, 2016, the Pentagon announced the launch of its first bug bounty pro-
gram [1]. From now on, the most paranoid organization in the United States will incen-
tivize hackers to break into its systems and report found vulnerabilities for a reward.
Although bug bounty programs have mushroomed in the last few years, this audacious
announcement by a prominent defense administration may set a precedent, if not a stan-
dard, for the future of cybersecurity practice.

Software security has long been recognized as a hard computational problem [2],
which most often requires additional human intelligence. However, given today’s com-

puter systems’ complexity, individual human intelligence seems to have become insuf-
ficient, and organizations interested in drastically increasing their security are tempted
to tap the wisdom of crowds [3], just like other disciplines have found ways to mobilize
people at scale for their hard problems, such as for sorting galaxies in astronomy [4],
folding proteins in biology [5], recognizing words from low quality book scans [6] or
to address outstanding mathematics problems [7, 8].

All the above examples involve various aspects of human intelligence, ranging from
pattern recognition (Captcha [6]) to highest abstraction levels (mathematical conjec-
tures). It is not clear what kind of intelligence is required to find bugs and vulnera-
bilities in software, but it generally requires a high level of programming proficiency
coupled with hacking skills to think out of the box and find unconventional and thus,
unintended use for a software. In a nutshell, searching for complicated bugs and vulner-
abilities may be a hard and time-consuming task, which is generally not, or at least no
longer, considered as a leisure that hackers perform for hedonic pleasure or for the good.

Therefore, nowadays some (monetary) incentives must be set, in order to get se-
curity researchers to hunt bugs. Offering rewards for vulnerabilities has been a long
endeavor over the last decade [9], with many more or less successful attempts to set
incentives right [10, 11, 12]. HackerOne, a leading online service dedicated to helping
organizations set up and manage their own bug bounty program, has paved the way to
the deployment of bounty programs at scale. Nevertheless, in this pioneering era of bug
bounty hunting, it remains unclear how current mechanism designs and incentive struc-
tures influence the long-term success of bounty programs. Better understanding of bug
discovery mechanisms on the one hand [13], and on the other hand, better characteri-
zation of the utility functions of respectively (i) organizations operating a bug bounty
program and (ii) security researchers, will help understand how bug bounty programs
may evolve in the foreseeable future.

Here, we have investigated a public data set of 35 public bug bounty programs
from the HackerOne website. We find that as more vulnerabilities get discovered within
a bounty program, security researchers face an increasingly difficult environment in
which the probability of finding a bug decreases fast, while reward increases. For this
reason, as well as because the probability to find a bug decreases faster compared to the
payoff increase, security researchers are incentivized to consistently switch to newly
launched research programs, at the expense of older programs. This switching phe-
nomenon has already been found in [12]. Here, we characterize it further, by quantify-
ing the evolution of incentives as more vulnerabilities get discovered in bug bounty pro-
gram, and how researchers benefit on the long term from switching to newly launched
programs.

This article is organized as follows. Related research is presented in Section 2. Im-
portant features of the data set used here is detailed in Section 3. We then introduce the
main mechanism driving vulnerability discovery in Section 4. Results are presented and
discussed in respectively Sections 5 and 6. We finally in conclude in Section 7.

2 Related work

Achieving software reliability has concerned engineers for at least 4 decades [2,14,15].
Early empirical work on software bug discovery dates back to the time of UNIX sys-
tems [16], and over years, numbers of models for discovering vulnerabilities have been
developed (see [13, 17] for some of the most contemporary approaches). However, as
early as in 1989, it was recognized that the time to achieve a given level of software
reliability is inversely proportional to the desired failure frequency level [2]. For exam-
ple, in order to achieve a 10−9 probability of failure, a software routine should be tested
109 times. Actually, the random variable P (T > t) = 1/t corresponds to the Zipf’s
law [18,19], which diverges as the random variable sample increases (i.e., no statistical
moment is defined), and thus, it was rightly concluded that there would be software vul-
nerabilities as long as enough resources and time could be provided to find them. This
problem can also be seen from an entropy maximization perspective, which is good for
evolution (e.g., in biology) but detrimental in software engineering. Concretely, as ex-
plained in [20], given the evolutionary nature of software, new bugs can be found in a
software program as long as use perspectives change. The difficulty of bug hunting is
therefore not about finding a bug per se, but rather about envisioning all possible use
situations, which would reveal a software defect (i.e., program crash) or an unintended
behavior.

Software solutions have been developed to systematically detect software inconsis-
tencies and thus potential bugs (e.g., Coverity, FindBugs, SLAM, Astree, to name a
few). However, to date, no systematic algorithmic approach has been found to get rid
of bugs at a speed that would allow following the general pace of software evolution
and expansion. Thus, human intelligence is still considered as one of the most efficient
ways to explore novel situations – by manual code inspection or with the help of bug
testing software – in which a software may not behave in the intended way.

Management techniques and governance approaches have been developed to help
software developers and security researchers in their review tasks, starting with pair
programming [21]. To protect against cyber-criminals, it is also fashionable to hire eth-
ical hackers, who have a mindset similar to potential attackers, in order to probe the
security of computer systems [22, 23, 24]. Inherited from the hacking and open source
philosophies, the full disclosure policy has been hotly debated as promoting a safer In-
ternet, by forcing software editors to recognize vulnerabilities discovered by indepen-
dent researchers, and quickly fix them, as a result of publication on public forums [25].
The full-disclosure model has evolved into responsible disclosure, a standard practice
in which the security researcher agrees to allow a period of time for the vulnerabil-
ity to be patched before publishing the details of the flaw uncovered. In most of these
successful human-driven approaches, there is a knowledge-sharing component, may it
be between two programmers sitting together in front of a screen, ethical hackers be-
ing hired to discover and explore the weaknesses of a computer system, or the broader
community being exposed to open source code and publicly disclosed software vul-
nerabilities. Thus, Eric Raymond’s famous quote “Given enough eyeballs, all bugs are
shallow” [26], tends to hold, even though in practice things are often slightly more com-

plicated [27].

Recognizing the need of human intelligence for tackling security bugs at scale, re-
searchers have considered early on the importance of trading bugs and vulnerabilities
as a valuable knowledge, often earned the hard way. Vulnerability markets have thus
emerged as a way to ensure appropriate incentives for knowledge transfer from secu-
rity researchers to software and Internet organizations [28], and in particular, to jointly
harness the wisdom of crowds and reveal the security level of organizations through a
competitive incentive scheme [29]. The efficiency of vulnerability markets has however
been nevertheless questioned on both theoretical [30,31] and empirical grounds [32,33].

Early on and building on previous work by Schechter [29], Andy Ozment [34] rec-
ognized that in theory most efficient mechanism designs shall not be markets per se, but
rather auction systems [35]. In a nutshell, the proposed (monopsonistic) auction mech-
anism implies an initial reward R(t = t0) = R0, which increases linearly with time.
If a vulnerability is reported more than once, only the first reporter receives the reward.
Therefore, security researchers have an incentive to submit a vulnerability early (before
other researchers might submit the same vulnerability), but not too early, so that they
can maximize their payoff R(t) = R0 + ε · t with ε the linear growth factor, which is
also supposed to compensate for the increasing difficulty of finding each new bug. But
setting the right incentive structure {R0, ε} is not trivial, because it must account for
uncertainties [36], such as work needed, or effective competition (i.e., the number of
researchers enrolled in the bug program). Furthermore, the probability of overlap be-
tween 2 submissions by different researchers has remained largely unknown.

Regardless of theoretical considerations (or perhaps by integrating them), bug bounty
programs have emerged as a tool used by the industry, first launched by specific soft-
ware companies for their own needs and with rather heterogeneous incentive schemes
[10], including with no monetary reward [11], and followed by dedicated platforms
comparable to trusted third parties in charge of clearing transactions between bug bounty
programs launched by organizations and security researchers. These platforms also as-
sist organizations in the design and deployment of their own program. The currently
leading platform is HackerOne.3 HackerOne runs 35 public programs, for organiza-
tions across a wide range of business sectors, and for which bounty awards are reported
on their website (in addition to a non-disclosed amount of private programs). Previous
research has investigated vulnerability trends, response & resolve behaviors, as well
as reward structures of participating organizations. In particular, it was found that a
considerable number of organizations exhibit decreasing trends for reported vulnerabil-
ities, yet monetary incentives have a significantly positive correlation with the number
of vulnerabilities reported [12].

3 HackerOne, https://hackerone.com/ (last access March, 4th 2016).

3 Data

The data were collected from the public part of the Hacker One website. From 35 pub-
lic bounty programs, we collected the rewards received by security researchers (in US
dollars), with their timestamps (45 other public bounty programs do not disclose de-
tailed information on rewards, and the number of private programs is not disclosed).
Since HackerOne started its platform in December 2013, new public programs have
been launched roughly every two months, following an essentially memoryless Poisson
process (λ = 57 days, p < 0.001 and R2 > 0.99). Figure 1A shows the timeline of
the 9 most active programs with at least 90 (rewarded) bug discoveries, as of February
15, 2016. When a new program is launched, we observe an initial peak (within weeks
after launch), which accounts for the majority of discoveries, suggesting a windfall ef-
fect. Following the initial surge of vulnerability discoveries, bounty awards become less
frequent following a decay function with long-memory, following a robust power law
decay ∼ tα with α = −0.40(4) (p < 0.001 and R2 = 0.79) at the aggregate level
and over all 35 bounty programs (see Figure 1B). Some programs depart from this av-
eraged trend: For instance Twitter exhibits a steady, almost constant bug discovery rate
and VKontakte exhibits its peak activity months after the initial launch. These peculiar
behaviors may be attributed to program tuning, to sudden change of media exposure or
even to fundamental differences of program comparative fitness, which we do not cover
here.

The long-memory process of bug discovery following the launch of a bounty pro-
gram we observe here, is reminiscent of human timing effects: When the program
launches, it takes some time first for the researcher to be exposed to the new program
(through the media and social media), second for the researcher to find and submit bugs,
and third for the organization managing the bug bounty program to assess the quality
of each submission, and assign a proper reward. To account for all these delays, one
may resort to priority queueing applied to humans: First, competing attention prevents
immediate exposure to the news of a new program; Second, when security researchers
get interested in a new program, they may still be actively searching bugs on other pro-
grams or performing other tasks (such as e.g., their regular job, leisure, family matters);
Third, when subjected to a flow of bug submissions, security teams at organizations
leading bounty programs assign priorities among submissions, and resolve them with
human resources available at the time of submission. These delays are best rational-
ized by human timing contingencies, and moreover, by an economy of time as a scarce,
non-storable resource, which is known to generate long-memory responses of the form
∼ t−1.5 between the arrival and the execution of a task [37]. The observed much slower
decay may result from the compound effect of multiple delays, such as those mentioned
above. The initial burst of discoveries, followed by a long-memory decay may also re-
sult from the increasing difficulty associated with finding new bugs for each bounty
program, as the most obvious vulnerabilities get uncovered first. Since, we consider
only the time of discovery as the moment when the validity of the bug submitted is ac-
knowledged by the program manager, we are mostly blind to the human timing effects
associated with the long-memory process observed on Figure 1B, including when sub-

Time [weeks]

 B
o

u
n

ti
e

s

lo
g

1
0

(N
o

rm
a

li
z
e

d
 D

e
c

a
y

)

log10(Time) [weeks]

~ t -0.34

A

B

Fig. 1. A. Weekly vulnerability discoveries for the 9 most active programs (with at least 90 bug
discoveries as of February 15, 2016). The light colored vertical bars represent the start of the
program, occurring when the first bounty is awarded. Most programs exhibit an initial shock,
followed by a decay of discoveries, which is characterized at the aggregate level by a long-
memory process (panel B) characterized by a power law decay ∼ tα with α = −0.40(4) (p <
0.001 and R2 = 0.79). Each data point in the figure is the median of normalized vulnerability
numbers of all 35 programs considered in this study.

missions are made, but don’t lead to a discovery associated with a monetary reward.

4 Method

Bug bounty programs work on the premise that humans are efficient at searching and
finding vulnerabilities, in particular when large pools of security researchers with a
variety of skills can be mobilized for the task. It is in the interest of the organization
launching a bounty program to exhaust vulnerabilities, or to reduce the probability of
finding additional vulnerabilities to a residual level. In addition, incentives must be
carefully set. Here, we investigate the interplay between the vulnerability exhaustion
process, and the cumulative reward distributed to security researchers within and across

bounty programs. When a bug bounty program starts, it attracts a number of security
researchers, who in turn submit bugs. Subsequent bug discoveries get increasingly dif-
ficult [20], and program managers must reward vulnerabilities accordingly in order to
keep security researchers onboard (or to attract new ones according to the current level
of difficulty).

Starting from an initial probability of discovering the first vulnerability P (k = 0) =
1, we assume that the probability to find a second (and subsequent) vulnerability(ies),
is a fraction of the former probability: Pk+1 = β ∗Pk with β a constant strictly smaller
than, yet usually close to 1. The probability that no more discovery will be made after
k steps is given by Pk = βk(1− β). Conversely, starting from the initial reward R0 =
R(k = 0), the subsequent reward R1 = Λ1 · R0, and further additional reward R2 =
Λ2Λ1 ·R0. After n steps, the total reward is the sum of all past rewards:

Rn = R0

n∑
k=1

Λ1...Λk. (1)

Thus, Rn is the recurrence solution of the Kesten map (Rn = ΛnRn−1 + R0)
[38,39]: As soon as amplification occurs (technically, some of the factors Λk are larger
than 1), the distribution of rewards is a power law, whose exponent µ is a function of
β and of the distribution of the factors Λk. In the case where all factors are equal to Λ,
this model predicts three possible regimes for the distribution of rewards (for a given
program): thinner than exponential for Λ < 1, exponential for Λ = 1, and power law
for Λ > 1 with exponent µ = | lnβ|/ lnΛ (see Appendix). The expected payoff of
vulnerability discovery is thus given by,

Uk = Pk ×Rk, (2)

with both Pk and Rk random variables respectively determined by β and Λ. Because U
is a multiplication of two diverging components, its nature is reminiscent of the St. Pe-
tersburg paradox (or St. Petersburg lottery), proposed first by the Swiss Mathematician
Nicolas Bernoulli in 1713, and later formalized by his brother Daniel in 1738 [40]. The
St. Petersburg paradox states the problem of decision-making when both the probability
and the reward are diverging when k → ∞: A player has a chance to toss a fair coin
at each stage of the game. The pot starts at 2 and is doubled every time a head appears.
The first time a tail appears, the game ends and the player wins whatever is in the pot.
Thus the player wins 2 if a tail appears on the first toss, 4 if a head appears on the first
toss and a tail on the second, 8 if a head appears on the first two tosses and a tail on the
third, and so on. The main interest of Bernoulli was to determine how much a player
would be ready to pay this game, and he found that very few people would like to play
this game even though the expected utility increases (in the simplest case proposed by
Bernoulli,Un =

∑n
k=0 Uk = n) [40]. For bug bounty programs, the situation is slightly

similar because the main question a security researcher may ask herself when enrolling
a bug bounty program is the amount of initial effort (i.e., the upfront learning costs) to
be devoted in order to make a positive expected net payoff. The payoff conditioned by
the expected number of bug discoveries and their associated monetary rewards minus

the cost. The situation of a security researcher differs from the St. Petersburg lottery, as
bug search costs are incurred at every step. Since these costs influence the probability to
find an additional bug, for the sake of simplicity, we assume that they are integrated in
P (k). The security researcher may also decide to stop searching for bugs in a program,
at any time. This is equivalent to setting Pk+1 = 0.

The expected payoff Uk therefore determines the incentive structure for security
researchers, given that the bounty program manager can tune R0 and in some cases,
the manager may also tune Λ. However, in general rules are set upfront and shall not
be changed in the course of the bounty program. Changing game rules is risky as it
may undermine trust in the program. Here, we assume the bounty program managers
don’t tune their reward policy after the bug bounty program has started. In principle, the
manager could set R0 to influence P0 and indirectly Pk. Mapping the discovery rank
k into the rate of discovery may also help considering discounting aspects in presence
of competing opportunities and inter-temporal choices under uncertainty [41]. A new
public bounty program is launched at a Poisson rate, approximately every 2 months,
and each launch brings its windfall effect, leaving the researcher with the choice to
either keep digging increasingly harder vulnerabilities (rare but with higher reward),
or turning to the low hanging fruit (frequent but with low reward) of a new program.
We shall therefore verify whether newly launched programs actually influence security
researchers.

5 Results

The vulnerability discovery process in a bug bounty program is driven by the probabil-
ity to find an additional bug given that k bugs have already been discovered (i.e., the
exhaustion process), and program managers aim to maximize Bc, the total number of
bugs found. Our results show that the number of bugs discovered is a super-linear func-
tion of security researchers who have enrolled in the program (see Figure 2A). While
bounty programs benefit from the work of a large number of researchers, researchers
overall benefit from diversifying their efforts across programs (see Figure 3C). This
benefit is particularly tangible regarding the cumulative reward they can extract from
their bug hunting activity. In particular, we illustrate how researchers take the strategic
decision to enroll in a newly launched program, at the expense of existing ones they
have formerly been involved in.

5.1 Security researcher enrollment determines the success of a bug bounty
program

As presented on Figure 2A, we find that the number Bc of vulnerabilities discovered
scales as Bc ∼ hα with α = 1.10(3) and h the number of security researchers enrolled
in a program. Since α > 1, a bounty program benefits in a super-linear fashion from
the enrollment of more researchers. This result is reminiscent of productive bursts and
critical cascades of contributions in open source software development [42]: Each en-
rollment (i.e., mother event) initiates a cascade of vulnerability discoveries (i.e., daugh-
ter events) by the security researcher. Here, each cascade stems from a single security

A B

xResearcher Count h

P
(X

>
x

)

B
o

u
n

ty
 C

o
u

n
t
B
c

B
c
 ~ hα

with α = 1.10(3)

(p < 0.001, R2 > 0.98)

P(X > x) ~ 1/xγ

γ = 1.63(7)

Fig. 2. A. The number of bounty discoveries per program Bc scales as hα with α = 1.10(3)
and h the number of security researchers enrolled in a program. Since α > 1, a bounty programs
benefits in a super-linear fashion to the enrollment of more researchers. B. The tail distribution
of bounty discoveries per researcher per program follows a power law distribution P (X > x) ∼
1/xγ with 1 < γ = 1.63(7) < 2. The distribution is therefore relatively well bounded (with
the first moment being well-defined). Furthermore, we observe an upper cut-off of the tail with
xmax ≈ 400 bounties. Thus, from A. and B. combined, we find that the number of vulnerabilities
is mainly driven by the number of researchers enrolled in programs.

researcher (researchers mostly search bugs alone) and the nature of these cascades is
captured at the aggregate level by their size as a random variable. As shown on Fig-
ure 2B, the distribution of bounty discoveries per researcher and per program follows
a power law tail P (X > x) ∼ 1/xγ with γ = 1.63(7). The distribution is therefore
heavy-tailed, but not extreme, as the first statistical moment (i.e., the mean) is well-
defined (as a result of γ > 1). Moreover, we observe an upper cut-off of the tail with
xmax ≈ 400 bounties. Thus, each enrollment of a security researcher in a program pro-
vides a statistically bounded amount of new bug discoveries. According to our data and
analysis, there is no bug bounty “czar” who could scoop a dominant portion of bugs.
These results have somewhat counterintuitive organization design implications that we
discuss later on.

5.2 Security researchers are incentivized to diversify their contributions across
bug bounty programs

For security researchers, the main metric is the expected cumulative payoff earned from
the accumulation of bounty awards over all programs. This expected payoff is governed
by the probability to find a given number of vulnerabilities and their associated pay-
off, as discussed in Section 4. To fully understand the incentive mechanisms at work,
we consider 3 perspectives: (i) the expected cumulative down-payment made by bug
bounty program managers (see Figure 3A), the expected cumulative payoff from the

A. Cumulative Rewards per

Program (over All Programs)

B. Cumulative Rewards per Program

per Researcher (over All Programs)

C. Cumulative Rewards per

Researcher (over All Programs)

scaling = 1.24(1)

p < 0.001, R2 > 0.99scaling = 1.27(1)

p < 0.001, R2 > 0.99

scaling = 1.40(3)

p < 0.001, R2 > 0.99

log10(Rank) log10(Rank) log10(Rank)

lo
g

1
0

(S
u

m
 R

e
w

a
rd

s
)

lo
g

1
0

(S
u

m
 R

e
w

a
rd

s
)

lo
g

1
0

(S
u

m
 R

e
w

a
rd

s
)

Fig. 3. A. (Log-)binned cumulative down-payment per program over all public programs on the
HackerOne platform, scales as Rk ∼ k1.27 (p < 0.001, R2 > 0.99), with k the rank. Each
log-bin shows the mean value and the circle sizes depict the number of values in each bin (i.e.,
the rank frequency). The super-linear scaling relationship between the cumulative reward and the
rank shows that reward increases as a function of k. However, the frequency of vulnerabilities Pk
is only slightly upwards trended increasing as ∼ k0.13 (p < 0.001, R2 = 0.40). B. Considering
the opposite figure from the viewpoint of researcher’s expected payoff when enrolling in a single
bug bounty program, the super-linear effect is much stronger (Rk ∼ k1.40 with p < 0.001 and
R2 > 0.99). However, the frequency decays following a power law of the form Pk ∼ k−1.85

(p < 0.001, R2 = 0.97). C. Over all bug bounty programs, security researchers have another
expected payoff: the reward scaling is smaller (Rk ∼ k1.24 with p < 0.001, R2 > 0.99), yet the
frequency of bug discoveries decays much slower as a function of rank Pk ∼ k−1.05 (p < 0.001,
R2 = 0.85).

viewpoint of a researcher for (ii) one program (see Figure 3B), and for (iii) all pro-
grams (see Figure 3C).

The average cumulative down-payment per program exhibits a super-linear scaling
as ∼ k1.27 (p < 0.001, R2 > 0.99), while the frequency of vulnerabilities Pk is only
slightly upwards trended increasing as ∼ k0.13 (p < 0.001, R2 = 0.40). The expected
down-payment by bug bounty program managers therefore scales as ∼ k1.40. This is a
considerable super-linear increase (as k →∞), which casts questions on the long-term
sustainability of bug bounty programs.

From the viewpoint of the researcher and her expected payoff from a single bug
bounty program, the increase of average cumulative reward (Rk ∼ k1.40) does not off-
set the fast decay of probability (Pk ∼ k−1.85) to find a vulnerability of rank k. The
expected payoff therefore follows ∼ k−0.45, which clearly does not bring high incen-
tives to explore in depth a bug bounty program. It is important to note however, that
the bug bounty manager cannot fix Pk, which is a genuine feature of bug discovery by
humans. To maintain positive individual incentives, the manager should set an incre-
mental reward such that Rk ∼ kα with α > 1.40, which in turn would worsen the
down-payment function both in terms of incremental expenditures and in exploration
of higher ranks. This approach does not consider possible individual human hard limits,

preventing finding additional bugs. In that latter case, setting higher reward incentives
would have no effect.

Security researchers tend to switch from one bounty program to another program
[11, 12]. The strategy can be assimilated to portfolio diversification [43]. Over all bug
bounty programs, security researchers have another much more favorable expected pay-
off: The reward scaling is smaller (Rk ∼ k1.24 with p < 0.001, R2 > 0.99), yet the
frequency of bug discoveries decays much slower as a function of rank Pk ∼ k−1.05

(p < 0.001, R2 = 0.85). Therefore, over all bounty programs, security researchers
have an increasing, yet marginally decreasing, incentive to explore higher ranks as
Uk ∼ k0.19. In a nutshell, security researchers have an incentive to keep searching
for bugs on a large variety of bug bounty programs.

5.3 Influence of newly launched programs on researcher behaviors

As security researchers weigh their strategic choice to switch their attention from one
program to another, the time factor is determinant because the expected payoff is de-
pendent on the current vulnerability rank, which maps into the time dimension (i.e, the
duration between two discoveries is drawn from a characteristic random variable, which
is not considered here). While switching decision may be made by a researcher at any
time, the most obvious moment is when a new program is being launched: Incentives
shift suddenly, and security researchers may decide to abandon older programs at the
expense of the new program. However, a number of factors may influence their deci-
sion: The reputation of the organization launching the program (it brings more fame to
submit a bug to e.g., Twitter compared to a less famous organization), the amount of
reward, and the relative time between an old program and the newest one. Here, we aim
to test 3 hypotheses:

– H1: An existing bounty program will receive less reports when more new programs
are launched,

– H2: An existing bounty program will receive less reports when bounty rewards
provided by newly launched programs is higher,

– H3: The number of newly launched programs has a larger impact on the contribu-
tion to older programs.

We start with a simple ordinary least square (OLS) regression model, which is spec-
ified as follows:

Vit = β0 + β1dPt + β2Tit + β3Ait + β4Bit + εit. (3)

Vit is the number of vulnerability reports received by bounty program i in the month
t. dPt is the number of new programs launched in month t. Hypothesis H1 predicts
that its coefficient (β1) is negative. Tit is the number of months since bounty program
i launched. Following previous work [12], we consider two control variables that could
influence researcher’s decision. We first incorporateAi the log of the Alexa rank, which
measures web traffic as a proxy of popularity for organization i. Bi is the log of the
average amount of bounty paid per bug by bounty program i. Both Ai and Bi are

assumed to remain constant over time. Finally, εit is the unobservable error term. In
models 2-4, we extend the basic model (model 1) to further study competition occurring
between bounty programs. These alternative specifications include:

– Average bounty of newly launched programs: Intuitively, if new programs offer
higher rewards, they should attract more researchers from existing programs. We
calculate the average bounty for all new programs in month t as NBt in models
2-4.

– Interaction between dPt and Tit: Conceivably, the effect of new programs on
existing programs depends on certain characteristics of the latter, such as age. In
particular, we ask if a new entrant has more negative effects on older programs
compared to younger programs? To examine this, we consider an interaction term
between the number of new programs (dPt) and the age of the program (Tit) in
models 3-4. Hypothesis H3 predicts that its coefficient is negative.

– Program fixed effect: To better control for program-specific, time-invariant char-
acteristics, e.g., the reputation among researchers, we add program fixed effect in
model 4. The addition of this fixed effect allows us to examine how bug discovery
changes over time within each program i.

Table 1. Regression results.

(1) (2) (3) (4)
VARIABLES Vit Vit Vit Vit

dPt -1.235*** -1.350*** -2.310*** -1.236**
(0.305) (0.327) (0.603) (0.515)

Ai -23.61*** -23.72*** -23.72*** -7.188**
(2.140) (2.156) (2.152) (3.473)

Bi 16.64*** 16.56*** 16.75*** -7.414
(1.311) (1.315) (1.339) (5.698)

Tit -0.690 -0.658 -3.312*** -3.758***
(0.426) (0.427) (1.239) (1.128)

Bnew,t -0.0445 -0.0312 -0.0321*
(0.0280) (0.0277) (0.0184)

Tit × dPt 0.106** 0.0755*
(0.0431) (0.0406)

Constant 160.2*** 170.4*** 190.3*** 136.5***
(16.12) (18.80) (23.17) (26.17)

Observations 1,212 1,212 1,212 1,212
R-squared 0.314 0.316 0.319 0.647
Program FE No No No Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The regression results are shown in Table 1. Consistent with our prediction, the co-
efficient of dPt is negative and statistically significant in all 4 specifications. Ceteris

paribus, the launch of new programs reduces the number of vulnerabilities reported
to existing programs. In other words, the entry of new programs indeed attracts re-
searcher’s attention away from existing programs, which is consistent with fast decreas-
ing expected payoff for individuals searching bugs for a specific program. Also, the av-
erage bounty paid by new programs (Bnew,t) has a negative effect on existing programs
as well, but the coefficient is only significant in model 4. Again this result is consistent
with the theory and above results, as researchers have a high incentive to find the low
rank low-hanging fruit bugs, even if the reward is small.

The interaction coefficients for term Tit × dPt in models 3 and 4 are positive and
statistically significant, so they do not support Hypothesis H3. The result shows that
the impact of newly launched programs depends on the age of the existing programs:
Compared to younger programs, the negative impact of dPt is smaller for programs
with a longer history, i.e., those with larger Tit. At first sight, this results may look at
odds with the fact that individual expected payoff from a specific program decreases as
a function of rank k, and presumably the older a program the more likely it has a high
rank. Thus, the switching effect should be stronger. Perhaps our OLS regression model
is limited in the sense that it does account for the absolute activity (which decreases
very slowly as t→∞, as shown on Figure 1B), instead of the variation rate.

Our model specification also allows us to show that the reputation of a bug bounty
(Ait) has a very strong effect on overall bug submissions. Coupled with the power law
decay of bug submission observed following an initial shock (c.f., Figure 1B), one may
observe that the overall amount of bugs found over time directly follows bug submis-
sions made right after the program was launched.

6 Discussion

Finding bugs in software code is one of the oldest and toughest problems in software
engineering. While algorithm based approaches have been developed over the years,
human verification has remained a prime way to debugging and vulnerability hunt-
ing. Moreover, the idea of getting “enough eyeballs” to inspect the code has been a
cornerstone argument for the open source software movement [26] along with the full-
disclosure argument, as well as for vulnerability markets [9]. Bug bounty programs are
perhaps the latest successful incarnation of markets for trading bugs and vulnerabili-
ties [9], which set incentives to disclose early, combined with an increase of payoff for
more rare and difficult bugs.

Here, we have found that the number of discovered bugs and vulnerabilities in a
bounty program is super-linearly associated with the number of security researchers.
However, the distribution of bugs found per researcher per program is skewed, but not
extreme. In other words, each researcher enrolled in a bug bounty program may con-
tribute her fair share of valid bugs, and no researcher is found to contribute orders of
magnitude more than the average. This result is rather surprising, as the common wis-
dom at the moment seems to be rather to use bug bounty programs for selecting most

talented security researchers [44]. In some way, there is a conceptual flaw in this com-
mon wisdom reasoning: If selecting one (resp. a few) particularly talented security re-
searcher(s), then the Coase theorem would apply [45] and it would be more interesting
for an organization to internalize the resource by hiring security consultants, or having
a in-house auditing team, both of which are already commonly done by organizations.
And because bug bounty programs exist and develop, it proves that the former security
practices are probably insufficient. On the contrary to this common wisdom, we posit
that bug bounty programs reach a large and diverse population of security researchers,
who can independently look at the focal software from as many different perspectives.

This observation is reminiscent of an early proposition on the topic: Brady et al. [20]
took an evolutionary theory perspective to the problem of software reliability, and basi-
cally said that software is sensitive to environmental changes (i.e., it is not evolutionary
fit) because it is usually designed for one purpose. The purpose however changes over
time (think e.g., of software packages in Linux, how they are surprisingly linked to-
gether [18], and how they are used in unintended ways). On the contrary to species
who adapt by the way of selection (only the fittest portion of the population survives),
this feature is essentially absent in software, according to Brady et al. Here, the focal
point is a software piece, or more precisely a set of complementary software pieces,
which define the service offered by the focal organization. Software fitness is assessed
by security researchers, internally (internal audit), externally (ethical hackers), or by
resorting to the crowd (bug bounty programs). The software runs in a well-defined en-
vironment, and it would be hard, if not impossible, to deploy it in other environments
(i.e., for a different use, e.g., by a different population), in order to test its robustness.
Note that some very large companies by a matter of fact extensively test their software
in a variety of environments given the pervasive nature of their service. One may think
of Facebook with more 1.5 billion users worldwide.

Because they all carry their own unique experience, security researchers offer a form
of confrontation with alternative environments. Additionally, the more remote from the
focal organization, the more original the view on the software piece (without the hassle
of deployment). Our results offer a similar conceptual view, as well as with the quote
by Eric Raymond “Given enough eyeballs, all bugs are shallow”. In sum, diversity of
views prevails over accumulated expertise, although we make no claim that expertise
is not required. We just observe that its individual effects are just bounded. These re-
sults also cast questions on the learning curves, and incentives to keep digging bugs in
a program, which the researcher is already familiar with. We observe that overall these
incentives become quickly insufficient in comparison with the increasing difficulty for
a researcher to find additional bugs.

Moreover, we find that the larger the population of enrolled researchers, the even
more bugs are found. In that process, the initial windfall effect of a newly launched pro-
gram is critical and determines an important portion of the bug discovery timeline, and
accordingly researchers are ready to switch their attention towards newly launched pro-
grams, at the expense of older ones. These results have critical implications for software

security: If we consider an arbitrary focal bug to be discovered, the chance that it will
be discovered increases with the number of researchers. If half researchers interested
in the security of the focal software are black hats, there is roughly 50% chance that
the focal bug will be discovered by a black hat. If the proportion of population types
(white and black hats) compounded over time is uneven, then the probability of discov-
ery falling in one of both categories changes accordingly. In other words, in order to be
effective (statistically speaking), a bug bounty program must reach much more white
hats, compared to the estimated amount of black hats interested in finding holes in the
focal software piece.

Most security researchers however participate in multiple bug bounty programs, and
when a new program is launched, they face the strategic choice of switching program.
Our results show that researchers have a decreasing incentive to explore higher ranks
within the same program (Figure 3B), while they have an increasing, yet marginally de-
creasing, incentive to explore multiple programs (Figure 3C). We further confirm these
results with a simple regression model that researchers tend to switch when new pro-
grams are launched. This is a strong signal that researchers make rational choices in the
bug hunting environment: They have high incentives to switch quickly to a new pro-
gram and harvest as fast as possible many frequent bugs with little reward, rather than
less frequent yet more endowed bugs, even though the reward structure of bug bounty
programs seems to incentivize generously the reward of high rank (i.e., less probable)
vulnerabilities (Figure 3A). This result raises questions on some hard limits associ-
ated with incentives associated with bug discovery by humans: The disincentive clearly
stems from the difficulty for individual researchers to reach high ranks (i.e., Pk → 0
when k → ∞), not from the reward scheme. While at first sight this turnover of secu-
rity researchers may look bad to a bug bounty program manager, it may in the end be
beneficial provided that a renewal of security researchers is provided. The bug bounty
platform must be designed carefully to ensure that a sufficient inflow of new security
researchers are enrolled and scattered among all programs hosted on the platform, in-
cluding older ones, in order to compensate for researchers switching to new programs.

Using rankings provides handy insights on the processes governing the vulnerabil-
ity discovery process, and to some extent, associated incentives. However, the rank is
an arbitrary measure of time, which hardly accounts for the effort spent on research-
ing bugs, as well as for discounting effects. For instance, if the time required to find
a vulnerability increases with the rank, then the expected payoff shall be discounted
accordingly. Other aspects enter the equation: While most submissions occur early on
after the program launch, this is also the moment when an organization might be less
prepared to respond to a large flow of tasks, which in turn may trigger priority queue-
ing and contingent delays [37]. While some workaround may be envisioned, publicly
available data currently limit some desirable investigations, involving timing and dis-
counting effects.

In this study, we have considered the incentive mechanisms at the aggregate level.
Managers however organize enrollment, set incentives and tackle the operational pipeline,

involving submission reviews and payroll processing. All these aspects, which are unique
to each program, may crowd in, or on the contrary crowd out, security researchers from
bug bounty programs. In particular their willingness to participate will be affected, but
also the amount of effort they are ready to throw in the search of vulnerabilities. It is the
hope of the authors to get increasingly fine-grained insights in the future, to compare
bug bounty programs, and thus establish benchmarks of most performing programs,
in an environment driven by large deviation statistics, and incentives structures, which
resemble the St-Petersburg paradox, a well-known puzzle for decision making in be-
havioral economics.

7 Conclusion

In this paper, we have investigated how crowds of security researchers hunt software
bugs and vulnerabilities on the public part of a bug bounty platform. We have found
that it is essential for managers to design their program in order to attract and enroll
the largest possible number of security researchers. Studying the incentive structure of
35 public bug bounty programs launched at a rate of one per month over 2 years, we
have found that security researchers have high incentives to rush to newly launched
programs, in order to scoop rewards from numerous easy bugs, and as the program ages
(and therefore, the probability of finding a vulnerability decreases), switch to newer
“easier” programs. Our results suggest that yet incentives are generously set by program
managers, it is quickly getting harder for a researcher to find vulnerabilities, once she
has discovered the obvious ones. This windfall effect is positive as it allows security
researchers provide their unique perspective in many bug bounty programs. However,
the loss of researchers by older bug bounty programs should be compensated with new
security researchers in order to ensure renewal of perspectives.

Acknowledgements This research was supported in part by the National Science Foun-
dation through award CCF-0424422 (TRUST - Team for Research in Ubiquitous Secure
Technology). One of the authors (TM) acknowledges support from the Swiss National
Science Foundation (SNSF; Grants PA00P2 145368 and P300P2 158462). The authors
would like to thank Aron Laszka for his valuable comments, as well as the 3 anonymous
reviewers who provided insightful comments and thus contributed to a considerable im-
provement of the manuscript.

References

1. Greenberg, A.: Pentagon launches the feds first bug
bounty for hackers http://www.wired.com/2016/03/
pentagon-launches-feds-first-bug-bounty-hackers/. Last accessed
March 4th, 2016.

2. Adams, E.: Optimizing preventive maintenance of software products. IBM Journal of Re-
search and Development 28(1) (1984) 2–14

3. Surowiecki, J.: The wisdom of crowds. Anchor (2005)

4. Smith, A.M., Lynn, S., Lintott, C.J.: An introduction to the zooniverse. In: First AAAI
Conference on Human Computation and Crowdsourcing. (2013)

5. Khatib, F., Cooper, S., Tyka, M.D., Xu, K., Makedon, I., Popović, Z., Baker, D., Players, F.:
Algorithm discovery by protein folding game players. Proceedings of the National Academy
of Sciences 108(47) (2011) 18949–18953

6. Von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard ai problems for
security. In: Advances in Cryptology, EUROCRYPT 2003. Springer (2003) 294–311

7. Gowers, T., Nielsen, M.: Massively collaborative mathematics. Nature 461(7266) (2009)
879–881

8. Cranshaw, J., Kittur, A.: The polymath project: lessons from a successful online collabo-
ration in mathematics. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2011) 1865–1874

9. Böhme, R.: A comparison of market approaches to software vulnerability disclosure. In:
Emerging Trends in Information and Communication Security. Springer (2006) 298–311

10. Finifter, M., Akhawe, D., Wagner, D.: An empirical study of vulnerability rewards programs.
In: USENIX Security. (2013)

11. Zhao, M., Grossklags, J., Chen, K.: An exploratory study of white hat behaviors in a web
vulnerability disclosure program. In: Proceedings of the 2014 ACM Workshop on Security
Information Workers, ACM (2014) 51–58

12. Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discovery ecosys-
tems. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, ACM (2015) 1105–1117

13. Zhao, M., Liu, P.: Empirical analysis and modeling of black-box mutational fuzzing. In:
International Symposium on Engineering Secure Software and Systems (ESSoS). (2016)

14. Littlewood, B., Verrall, J.: A bayesian reliability growth model for computer software. Ap-
plied Statistics (1973) 332–346

15. Littlewood, B., Mayne, A.: Predicting software reliability [and discussion]. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 327(1596) (1989) 513–527

16. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX utilities.
Communications of the ACM 33(12) (1990) 32–44

17. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing symbolic execution with
veritesting. In: Proceedings of the 36th International Conference on Software Engineering,
ACM (2014) 1083–1094

18. Maillart, T., Sornette, D., Spaeth, S., Von Krogh, G.: Empirical tests of zipfs law mechanism
in open source linux distribution. Physical Review Letters 101(21) (2008) 218701

19. Saichev, A.I., Malevergne, Y., Sornette, D.: Theory of Zipf’s law and beyond. Volume 632.
Springer Science & Business Media (2009)

20. Brady, R.M., Anderson, R., Ball, R.C.: Murphy’s law, the fitness of evolving species, and the
limits of software reliability. Number 471. University of Cambridge, Computer Laboratory
(1999)

21. Hulkko, H., Abrahamsson, P.: A multiple case study on the impact of pair programming on
product quality. In: Proceedings of the 27th International Conference on Software Engineer-
ing, ACM (2005) 495–504

22. Smith, B., Yurcik, W., Doss, D.: Ethical hacking: the security justification redux. In: Inter-
national Symposium on Technology and Society (ISTAS’02), IEEE (2002) 374–379

23. Saleem, S.A.: Ethical hacking as a risk management technique. In: Proceedings of the 3rd
annual conference on Information security curriculum development, ACM (2006) 201–203

24. Bishop, M.: About penetration testing. Security & Privacy, IEEE 5(6) (2007) 84–87
25. Arora, A., Telang, R., Xu, H.: Optimal policy for software vulnerability disclosure. Man-

agement Science 54(4) (2008) 642–656

26. Raymond, E.: The cathedral and the bazaar. Knowledge, Technology & Policy 12(3) (1999)
23–49

27. Hafiz, M., Fang, M.: Game of detections: how are security vulnerabilities discovered in the
wild? Empirical Software Engineering (2015) 1–40

28. Camp, L.J., Wolfram, C.: Pricing security. In: Economics of information security. Springer
(2004) 17–34

29. Schechter, S.: How to buy better testing using competition to get the most security and
robustness for your dollar. In: Infrastructure Security. Springer (2002) 73–87

30. Kannan, K., Telang, R.: Market for software vulnerabilities? think again. Management
Science 51(5) (2005) 726–740

31. McKinney, D.: Vulnerability bazaar. Security & Privacy, IEEE 5(6) (2007) 69–73
32. Ransbotham, S., Mitra, S., Ramsey, J.: Are markets for vulnerabilities effective? ICIS 2008

Proceedings (2008) 24
33. Algarni, A., Malaiya, Y.: Software vulnerability markets: Discoverers and buyers. Interna-

tional Journal of Computer, Information Science and Engineering 8(3) (2014) 71–81
34. Ozment, A.: Bug auctions: Vulnerability markets reconsidered. In: Third Workshop on the

Economics of Information Security. (2004) 19–26
35. Milgrom, P.R., Weber, R.J.: A theory of auctions and competitive bidding. Econometrica:

Journal of the Econometric Society (1982) 1089–1122
36. Pandey, P., Snekkenes, E.A.: An assessment of market methods for information security risk

management. In: 16th IEEE International Conference on High Performance and Communi-
cations, WiP track. (2014)

37. Maillart, T., Sornette, D., Frei, S., Duebendorfer, T., Saichev, A.: Quantification of devia-
tions from rationality with heavy tails in human dynamics. Physical Review E 83(5) (2011)
056101

38. Kesten, H.: Random difference equations and renewal theory for products of random matri-
ces. Acta Mathematica 131(1) (1973) 207–248

39. Sornette, D., Cont, R.: Convergent multiplicative processes repelled from zero: power laws
and truncated power laws. Journal de Physique I 7(3) (1997) 431–444

40. Bernoulli, D.: Exposition of a new theory on the measurement of risk. Econometrica: Journal
of the Econometric Society (1954) 23–36

41. Loewenstein, G., Prelec, D.: Anomalies in intertemporal choice: Evidence and an interpre-
tation. The Quarterly Journal of Economics (1992) 573–597

42. Sornette, D., Maillart, T., Ghezzi, G.: How much is the whole really more than the sum of its
parts? 1? 1= 2.5: Superlinear productivity in collective group actions. Plos one 9(8) (2014)
e103023

43. Goetzmann, W.N., Kumar, A.: Equity portfolio diversification. Review of Finance 12(3)
(2008) 433–463

44. Zetter, K.: Bug bounty guru katie moussouris will help hack-
ers and companies play nice https://www.wired.com/2016/04/
bug-bounty-guru-katie-moussouris-will-help-hackers-companies-play-nice/.
Last accessed May 9th, 2016.

45. Coase, R.H.: The Nature of the Firm. Economica 4(16) (November 1937) 386–405

Appendix

Derivations of the Model for homogenous factors Λk = Λ Here, we provide a
detailed study of the possible behaviors of the model, also around the critical point
Λ = 1.

Three regimes must be considered:

1. For Λ < 1, the distribution is given by

PΛ<1(S ≥ s) = (1−β)

(
1− s

smax

)c
, smax :=

S0Λ

1− Λ
, c :=

lnβ

lnΛ
> 0 . (4)

This distribution can be approximated in its central part, away from the maximum
possible reward smax, by a Weibull distribution of the form

Pr(S ≥ s) ∼ e−(s/d)
c

. (5)

For Λ → 1−, we have smax → +∞ and, for s � smax, expression (4) simplifies
into a simple exponential function

PΛ→1−(S ≥ s) ∼ e−| ln(β)|s/S0 . (6)

2. For Λ = 1, the distribution of rewards is a simple exponential function since Sn =
nS0 is linear in the rank n and the probability of reaching rank n is the exponential
P (n) = βn(1− β). Actually, the expression (7) becomes asymptotical exact as

PΛ=1(S ≥ s) = (1− β)e−| ln(β)|s/S0 . (7)

3. For Λ > 1, the distribution of rewards is of the form,

PΛ>1(S ≥ s) =
1

(1 + s
s∗)

c , s
∗ :=

S0Λ

Λ− 1
, c :=

|lnβ|
lnΛ

, (8)

which develops to a power law distribution of reward of the form Pr(reward ≥
S) = C/Sµ with µ = c, when Λ→ +∞.

