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Although the desired outcome of security management is better security, empirical evidence for this link is

scarce. The scarcity arises from lack of data at the firm level for either security posture or incidents across a

broad sample of companies. To address this, we use a novel dataset of daily firm-level security information

for 480 of the Fortune 500 enterprises that consists of over 33 million security events. The dataset, obtained

from a security monitoring company, contains daily measures of security management and negative security

events for a 294 day period, yielding 133,248 firm/day observations. Empirical analysis finds that the number

of open ports in a firm is associated with higher incidences of botnet activity, potential exploitation, and

unsolicited communications, with some analyses also showing a link to malware activity. The findings are

robust to several alternative specifications using hidden Markov and hierarchical linear models. This paper

thus finds empirical evidence for a fundamental assumption of security practice — a link between security

management and improved security.
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1. Introduction

How does security management affect security outcomes? While the question is important, it has

been surprisingly difficult to analyze empirically across a broad sample of enterprises. The threat

environment is constantly evolving, with large spikes in activity that vary by day, industry, com-

pany, and technical specifics of vulnerabilities. Technical solutions are important, but not sufficient

(Dhillon and Backhouse 2000, Zhang et al. 2014, Ransbotham and Mitra 2009). For example, users

are seen as the weakest link in security (Laszka et al. 2013) and need to be incentivized properly

(August and Tunca 2006, August et al. 2014, Acquisti et al. 2016). Furthermore, while successful

attacks generate high levels of visibility, prevented attacks do not. The difficulty of connecting

actions to outcomes leads companies to focus their security investment decisions on process-oriented
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frameworks rather than on outcome-based measures (Moore et al. 2015). Yet this can lead to a

proliferation of potential security investments that lack direct evidence of their effectiveness. To

paraphrase John Wanamaker’s views on advertising, “Half of my security investments are wasted.

I just don’t know which half.”

The difficulty of empirically linking security practices to security outcomes extends to academic

research. Researchers use analytical modeling (e.g. Kannan and Telang 2005, Gupta and Zhdanov

2012) or study the actions of security professionals within firms (Mahmood et al. 2010) or use data

based on publicly disclosed attacks (Sarabi et al. 2016, Liu et al. 2015). However, data on company-

level security practices combined with granular data on attacks against the firm beyond a single

firm are rare (e.g. Edwards et al. 2016, Ransbotham and Mitra 2009, Mitra and Ransbotham 2015,

Ransbotham 2010). Prior studies do show the relationship between specific security techniques and

outcomes in test environments or small samples of firms (e.g. Kholidy and Baiardi 2012, Vieira et al.

2010, Wang et al. 2010). Other studies examine managers’ stated levels of security management,

or their intention to practice strong security management, but not their actual practices (e.g.

Gordon et al. 2005, Albrechtsen and Hovden 2009). Others focus on external attacks or company

vulnerabilities, but not both. While each area has made important contributions to the literature

on security management, they are not able to empirically examine the relationship, across a large

number of companies, between security management practices in situ and the actual incidents

these firms experience.

We address the need to empirically link actual practices to actual incidents using a novel dataset.

The data, from a security monitoring service, includes 133,248 daily observations from 480 of the

Fortune 500 firms over a 294 day period. We examine five specific measures of security for each firm.

To proxy for proper security management, we use the number of open ports with known security

vulnerabilities on a day. Open ports are a well-known threat vector, and closing unnecessary ports

does not require advanced security management expertise; rather, it requires managerial attention

to processes of deterrence, prevention, detection, and remedies (Straub and Welke 1998). In par-

ticular, it is cheaper to close ports than to invest in security software. Therefore, closing ports is

a simple and inexpensive security step to take. As such, the number of open ports help proxy for

basic security management practice (Siponen and Oinas-Kukkonen 2007). For dependent variables,

we use four types of negative security events: botnet activity, malware activity, potential exploita-

tion, and unsolicited communication. In aggregate, these four events are important indicators of

the possible negative security events that a firm can experience.

Due to the daily granularity of the observations in our dataset, we can use strict models that

include firm fixed effects such that we compare a firm to itself while controlling for other potential

covariates at time and incident levels. This allows for a more causal interpretation of the results
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since other aspects of the firm (e.g. size, number of IT security employees, location, etc.) are all

held constant. Using hierarchical linear modeling to examine across 133,248 firm-day observations,

we find that the number of ports open in a firm on a given day is an accurate predictor of a negative

security outcome. Considering the negative events separately, we find that this effect is driven

primarily by three of the four event types: botnet activity, potential exploitation, and unsolicited

communications. These findings are robust to additional specifications of the hierarchical linear

model as well as hidden Markov modeling. Furthermore, we show the value of a data source which

can capture the daily security posture of hundreds of companies.

2. Empirical Methods
2.1. Data

One main difficulty in empirically linking in situ corporate security practices to security incidents

is data availability. It is difficult to obtain granular information on the two main constructs across

a large number of firms. While detailed information may be available from within a single firm,

it is difficult to know if results are idiosyncratic to the firm. Alternatively, while some data (such

as surveys) may be available across a number of firms, it can be difficult to reconcile perceptions

of activity with actual behavior by attackers or firms. As a result, empirical findings thus far are

limited (e.g. Edwards et al. 2016, Ransbotham and Mitra 2009, Mitra and Ransbotham 2015,

Ransbotham 2010, Ransbotham et al. 2012).

Using a novel dataset from a security monitoring service, we address both of the data challenges

for this research question. This third party dataset contains longitudinal measures relating to

both security practices and security outcomes, measured on a daily basis for a large number of

firms. The data is collected via global sensor networks that monitor external network traffic and

communications to and from firms based on their assigned IP address space. The accuracy of

this data is independently verified to confirm it accurately reflects the internal state of the firm’s

networks. Furthermore, the data has been shown to have a high degree of correlation with public

announcement of breaches at the firms. The dataset consists of daily observations of 480 of the

Fortune 500 firms for the period from 1 July 2014 until 20 April 2015. (However, some measures

are occasionally unavailable and thus we do not have a perfectly balanced panel of every firm

on every day for every event type.) This results in a set of 133,248 firm/day observations. Each

observation contains counts of basic security management activities and four types of negative

security incidents, among other measures.

We use the number of open ports with known vulnerabilities as a proxy for security management

effectiveness. Identifying open ports via port scanning is often a first step an attacker will make

for reconnaissance (Ransbotham and Mitra 2009). Therefore, closing unnecessary ports, especially
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those that have known vulnerabilities, is an important security management practice (Baldwin

et al. 2012) that reduces the chance of opportunistic paths of compromise (Ransbotham and Mitra

2009). It is also one of the first steps recommended for security management because of its relative

ease of implementation. Hence, although the measure is certainly not a complete measure of secu-

rity practices, the number of open ports is a “tip-of-the-iceberg” for identifying a firm’s security

management practices.

We measure attacker activity through four types of negative security incidents:

a.) Botnet activity: Messaging between the focal firm and botnet command and control servers.

b.) Potential exploitation: Internet communication designed to indicate that a system at the focal

firm has potentially been exploited.

c.) Unsolicited communication: Suspicious or irregular Internet traffic originating from the focal

firm (e.g., communication with darknets).

d.) Malware activity: Malware activity originating from the focal firm indicating that malware

has compromised a system.

The dataset contains 33,305,880 events. Each day averages 113,285 events with a minimum of

20,526 events and maximum of 325,744 events. Table 1 describes the breakdown by risk types and

date.

Table 1 Security Events by Date

Type Total Min Max Mean Median St. Dev.

Botnet activity 24,950,007 16,883 291,743 84,864 75,888 45,815.58
Potential exploitation 8,276,413 8 130,480 28,151 21,978 23,870.47
Unsolicited communication 74,047 0 1,098 252 223 152.02
Malware activity 5,413 0 34 18 19 6.51

The number of events varies widely across firms and days (see Table 2). Events also show sys-

tematic variation across days (see Figure 1). This correlated daily variation (Table 3) creates

identification challenges which we address in the analysis.

Table 2 Descriptive Statistics for Security Management and Events by Firm and Date

Statistic Min Max Mean Median St. Dev.

Botnet activity 0 282,326 187.24 0 4,281.29
Potential exploitation 0 120,615 62.11 0 1,532.69
Unsolicited communication 0 891 0.56 0 8.28
Malware activity 0 32 0.04 0 0.80

Open ports 0 1,974,000 2654.67 14 49,132.59

133,248 observations of 480 firms
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Figure 1 Security Events by Date
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Note. Lines represent a smoothed trend line (LOESS) for each type of event.

2.2. Model Specification

2.2.1. Hierarchical Linear Modeling Each unit of observation in our analysis is the number

of security events of each type, for each firm, for each day. Due to the nature of the phenomena

being measured – many zero states, punctuated occasionally by extreme non-zero values when

events occur – we focus the regression analysis on the binary presence of each type of event in the

focal firm on the focal day. We use a logit specification because of the outcome variables are binary.

(However, later analysis in Table 8 uses continuous measures and finds consistent results.) However,
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Table 3 Variable Correlations

Variable 1 2 3 4 5 6 7 8

1. Botnet activity 1.000

2. Potential exploitation 0.635 1.000

3. Unsolicited communication 0.311 0.238 1.000

4. Malware activity 0.055 0.060 0.161 1.000

5. Open ports (log) 0.169 0.144 0.241 0.195 1.000

6. Employees 0.118 0.103 0.107 0.218 0.331 1.000

7. Assets (current) 0.086 0.089 0.321 0.165 0.434 0.361 1.000

8. Revenue per employee −0.009 −0.008 −0.008 −0.018 −0.138 −0.169 0.124 1.000

9. Market value 0.103 0.099 0.231 0.110 0.386 0.434 0.771 0.070

Pearson product moment correlation using 133,248 observations of 480 firms

because of the correlated nature of events, as well as the systematic variation of events across days

and firms, we include fixed effects for each individual day, each firm, and each type of event. Errors

for each of these effects are unlikely to be independent. Therefore, we use a hierarchical logit model

with crossed date, firm, and type to incorporate this lack of independence (Figure 2).

Each firm f is in the set of all firms F ; each day t is in the set of all dates T ; and each type of

security event s is the set of all security events S. The presence of a security event yf,t,s is 1 if an

event of type s was observed in firm f on day t and 0 otherwise. Our focal variable, open portsf,t

is the number of open ports observed in a scan of firm f on day t. Xf , Xt, and Xs are indicator

variables for each firm, day, and event type (respectively). The variable yf,t,s is models as

yf,t,s = β0,f +β1,t +β2,s +β3× log(open portsf,t + 1) + εf,t,s,∀f ∈ F,∀s∈ S,∀t∈ T (1)

with firm, date, and event type specific effects estimated as

β0,f = β0 +βf ×Xf + ε0,f ,∀f ∈ F (2)

β1,t = β1 +βt×Xt + ε0,t,∀t∈ T (3)

β2,s = β2 +βs×Xs + ε0,s,∀s∈ S. (4)

This crossed structure allows observation level error distributed as a standard logistic distribu-

tion, εf,t,s, as well as correlated errors at the level of the firm (ε0,f ), day (ε0,t), and event type (ε0,s).

The model is simple conceptually, but the crossed effects control for any unobserved temporal

trends (affecting all firms), any firm specific effects (that are unchanging), and any event specific

effects.
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Figure 2 Hierarchical crossed model of security events

Firms: ∀f ∈ F Date: ∀f ∈ T Type: ∀s∈ S

yf,t,s yf,t,s yf,t,s yf,t,s yf,t,s yf,t,s . . . yf,t,s

Note. Each observation yf,t,s is influenced by clustered firm level (f), date level (t), and event type level (s) effects.

2.2.2. Hidden State Models The longitudinal nature of our data allows us to conduct addi-

tional analyses of the latent link between security management and security outcomes. While the

granular daily data is useful, security practices and outcomes may be slow to react; instead, each

may contribute to a general trend toward more or less security. From this perspective, we can con-

sider our data as signals of unobservable latent attributes. Security is an inherently unobservable

combination of many factors. Neither security management practices nor attacker practices are

directly observable. They are complex combinations of conditions, some of which we can measure

and others which we cannot. However, longitudinal analysis can infer the presence of latent states

ranging from higher levels of security to lower levels. Hidden Markov models identify these latent

security states and, importantly, the effects of the security management covariate on changes in

the firm latent security status. This is particularly important in our context where we only have a

subset of the possible security events and possible managerial activities.

Formally, the model (illustrated in Figure 3) consists of the following components. F is the set

of all firms in the dataset. A specific firm f is observed daily starting at time t= 0 (1 July 2014);

all firm observations begin on the same date. Activity related to the firm is observed until 20 April

2015 resulting in a uniform number of periods for each firm (T = 294 days).

A finite set S of n discrete states, {S1 . . . Sn}, abstracts the level of security in a firm. The initial

probabilities (πs, s∈ S) of these discrete states cover all options (
∑

s∈S πs = 1). By convention, the

base state, S1, reflects a high level of security within the firm. While latent security in an individual

firm is idiosyncratic, the set S covers all possible security levels. For example, firm fa likely has a

different latent level of security than firm fb on the same day but both have the same possible set

of state options. There may be many latent level of security for a firm; for simplicity of exposition,

we present results that consider two simple states— high and low. In the high state, the firm shows
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Figure 3 Hidden Markov Model of Low and High Security States

shφhh

sl

φhlφlh

φll

y1bh1(y1)

y2

y3

y4

bl4(y4)

Note. An HMM with two states {Sh, Sl} which can emit four discrete symbols {y1, y2, y3, y4}. φij is the probability

to transition from state Si to state Sj . bj(yk) is the probability to emit symbol yk in state sj .

few signs of malicious activity and in the low state, the firm shows evidence of a negative security

event that day. Later analysis considers a larger number of states.

These discrete states of firm security are not directly observed. Instead, a measurement model

(Bs, s∈ S) relates the hidden state to observable measures based on m emitted symbols, {y1 . . . ym}.

For our model, we focus on four emitted symbols. First, y1 measures the presence (binary, yes or

no) of botnet activity in a firm on a day. Second, y2 measures the presence (binary, yes or no) of

potential exploitation in a firm on a day. Third, y3 measures the presence (binary, yes or no) of

unsolicited communication from a firm on a day. Fourth, y4 measures the presence (binary, yes or

no) of malware activity in a firm on a day.

Finally, a transition model (φ) reflects the probability (φij) of transition from state Si in time t to

state Sj in time t+1. For each source (i) and destination state (j), the transitions probabilities sum

to 1;
∑

i∈S φij = 1, ∀j ∈ S. The hidden Markov model allows the transition probabilities to depend

on the number of open ports, reflecting security management activity, where larger values indicate

less effective security management. These transition probabilities are the focus of the empirical

analysis and estimate the influence of security management on the hidden security state of the

firm.

3. Results
3.1. Regression Results

The likelihood of an occurrence of each different type of event may differ considerably. To evaluate

this, Table 4 examines the hierarchical linear models with distinct subsamples for each individual
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security event type. The models include crossed effects for day and firm to control for temporal

effects that act on all firms as well as any unchanging firm-specific effects. Coefficients for Open

ports represent the change in log likelihood of the focal security event attributable to an increase

in open ports in a firm on a given day. Positive significant coefficients indicate that weaker security

management activities, as indicated by more open ports, are associated with more events for botnet

activity (Model T1, β = 0.082, p < 0.001), potential exploitations (Model T3, β = 0.325, p < 0.001),

and unsolicited communication (Model T4, β = 0.468, p < 0.001) but not for malware activity

(Model T2, β = 0.048, p= 0.19). The insignificance of the coefficient for malware activity may be

due to the sparsity of malware events in the dataset.

Table 4 Effect of Security Management on Individual Event Types

T1 T2 T3 T4
Botnet Malware Potential Unsolicited
activity activity exploitation communication

Fixed effects estimates

Constant −2.497∗∗∗ −15.112∗∗∗ −3.811∗∗∗ −12.182∗∗∗

(0.207) (0.919) (0.154) (0.001)

Open ports (log) 0.082∗∗∗ 0.048 0.325∗∗∗ 0.468∗∗∗

(0.018) (0.037) (0.019) (0.001)

Random effect variance (σ2)

Day level 0.607 0.544 2.626 0.389

Firm level 17.506 107.562 5.491 35.516

Fit statistics

Log likelihood −36,145.760 −1,270.592 −36,118.750 −6,436.343

Akaike information 72,299.530 2,549.185 2,549.185 12,880.690

Mixed effect generalized binomial (logit) models of the effect of security management activity on four security
event types (botnet activity, malware activity, potential exploitations, and unsolicited communication). All models
vary intercepts by day and firm (crossed). 133,248 observations in 480 firms from 1 July 2014 until 20 April 2015;
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; standard errors in parentheses

This analysis, however, treats each event type independently and does not take advantage of the

correlated nature of the events themselves. The presence of an event in a firm on a given day is not

independent of the other events. Ineffective security management can leave a firm open for many

types of threats. Therefore, we conducted additional analyses to account for the non-independence

of errors at the level of event types.

Table 5 summarizes results from the hierarchical linear logit model with crossed date, firm,

and type. Model M0 includes fixed effects for event type nested within date level (Equation 3)

effects. Model M1 adds the focal variable, open ports, and finds a positive relationship (β = 0.636,
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p < 0.001) between the number of open ports and security events. Model M2 adds the firm level

(Equation 2) effects to the date level (Equation 3) effects. Finally, Model M3 contains firm level

(Equation 2), date level (Equation 3), and event type (Equation 4) effects. The relationship between

open ports and security events is positive (β = 0.252, p < 0.001).

Table 5 Effect of Security Management on Security Events

M0 M1 M2 M3

Fixed effects estimates

Constant −2.671∗∗∗ −5.092∗∗∗ −5.151∗∗∗ −5.843∗∗∗

(0.198) (0.832) (0.936) (0.991)

Open ports (log) 0.636∗∗∗ 0.252∗∗∗

(0.003) (0.011)

Daily t fixed effects yes yes yes yes
Event type s fixed effects yes yes yes yes
Firm f fixed effects yes yes

Random effect variance (σ2)

Day level 0.1943 0.839 0.452 0.626

Event type level 2.747 4.266 10.029 10.036

Firm level 7.983 6.372

Fit statistics

Log likelihood −169,574.000 −139,044.300 −97,965.270 −97,713.910

Ratio relative to control (χ2) 61059.49∗∗∗ 502.73∗∗∗

Akaike information 339,154.000 278,096.600 195,938.500 195,437.800

Mixed effect generalized binomial (logit) models of the effect of security management activity on four security
event types (botnet activity, malware activity, potential exploitations, and unsolicited communication). Model M0

is control model varies intercepts by day; Model M1 adds Open ports; Model M2 varies intercepts by day and firm

(crossed); Model M3 varies intercepts by day, firm, and event type (crossed). 532,992 observations in 480 firms from
1 July 2014 until 20 April 2015; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; standard errors in parentheses

For brevity, the fixed effect estimates for the 294 dates and 480 firms are not included in the

table. However, Figure 4 (for firms and dates) and Figure 5 (for types) illustrate the variation in

each of the fixed effects.

The ROC curve in Figure 6 indicates how much predictive value is added by the models. The

control model, Model M0, has an area under curve (AUC) of 0.81 using only date and event type

effects. The AUC increases to 0.89 with the addition of security management (open ports). The

final model including crossed date, firm, and event type effects has an AUC of 0.95.

3.2. Hidden State Modeling

Hidden Markov Models (HMM) build upon the repeated (daily) observations of individual firms

to identify two or more latent states of security. This examines the extent to which the measure
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Figure 4 Variation in fixed effects
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Figure 5 Variation in fixed effects by security event type
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of basic security management, open ports, increases the likelihood of transitioning between higher

security and lower security states. This analysis complements our prior analyses using alternative

methods.

Table 6 estimates a transition matrix between the states and how security management influences

the transitions. The first finding is that security states are relatively sticky; the probabilities of

transitioning between states is low, as shown in the transition matrix. On average, the likelihood

of transitioning from the high security state to the low one in a given day is only 1 percent.

Second, poor security management increases the likelihood of transitioning from the high to

the low security state. The addition of the security management proxy improves the model fit;
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Figure 6 Receiver operating characteristic curves

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model AUC
M3: Management (+dates, firms, types) 0.95

M1:Management (+dates, types) 0.89
M0: No management (+dates, types) 0.81

Note. Model M2 is excluded; it is similar to M3.

for example, AIC reduces from 224,942 to 224,577 (χ2 = 368.96, p < 0.001). The transition matrix

indicates that a larger number of open ports increases the likelihood of transitioning from the high

security state to the low security state (φhl = 0.340). Additionally, a larger number of open ports

decreases the likelihood of transitioning back from a low security state to a high security state

(φhl =−0.139). The results are consistent with the earlier regression analyses.

The analysis in Table 6 considers only two states. However, a less dichotomous scenario is

likely. To investigate, we consider additional numbers of latent states. Table 7 summarizes those

analyses. Adding additional states does increase model fit and reduce AIC and BIC. With each

increasing number of states, the addition of security management measures increases the model
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fit significantly. We focus on the two state model (Table 6) for simplicity of interpretation, but

transition matrix results are consistent with larger numbers of latent states.

Table 6 Hidden Markov Model Transitions Model Analysis

Variable Model HMM0 Model HMM1

Initial States
State Sh State Sl State Sh State Sl

Probability 0.634 0.366 0.631 0.369

Transition Matrix
State Sh State Sl State Sh State Sl

State 1 (Sh) 0.989 0.011 0.995 0.005
State 2 (Sl) 0.025 0.975 0.046 0.954

Effects of Covariates on Transition Probabilities
Sh→ Sl Sl→ Sh Sh→ Sl Sl→ Sh

Constant −3.573 −1.916 −5.358 −3.027
Open ports (log) 0.340 −0.139

Loglikelihood -112,460.3 -112,275.8
AIC 224,942.5 224,577.5
BIC 225,050.3 224,704.9

Loglikelihood Ratio χ2 368.96∗∗∗

Two state hidden Markov model where Sh is the more secure state; Sl is the less secure

state. Significance levels: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; AIC is Akaike information
criterion; BIC is Bayesian information criterion.

Table 7 Effect of Varying the Number of States in Hidden Markov Models of Security Events

Hidden Control Model Security Management
States LogL AIC BIC LogL AIC BIC LLR

2 −112,460 224,943 225,050 −112,276 224,578 224,705 368.96∗∗∗

3 −101,844 203,728 203,924 −101,752 203,556 203,811 183.77∗∗∗

4 −88,587 177,236 177,540 −88,313 176,712 177,133 548.38∗∗∗

5 −85,560 171,208 171,639 −85,668 171,465 172,092 −217.26

Hidden Markov models (with and without transition based on the number of open ports) modeling an increasing number of

latent states. LogL is LogLikelihood; AIC is Akaike information criterion; BIC is Bayesian information criterion; LLR is the

LogLikelihood Ratio.

Table 8 considers several alternatives to the focal results (Model M3 in Table 5). Given the

sparseness of some attacks, the results could be driven by firms or dates that have little activity.

Model R1 excludes 10% of the least attacked firms and continues to find that security management

affects activity (β =−5.223, p < 0.001). Model R2 excludes 10% of the dates with the least activity

and continues to find that security management affects activity (β =−5.753, p < 0.001). Additional

covariates are available for many of the firms in our dataset. Model R3 includes additional firm

covariates of the number of employees (β = 0.409, p < 0.001), firm assets (β = 0.493, p < 0.01), sales
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per employee (β =−0.469, p < 0.01), and market value (β = 0.362, p < 0.05). Model R4 interacts

market value and security management and finds that security management has a stronger effect

in larger firms (β = 0.057, p < 0.001). Model R5 log transforms the number of security events as a

dependent variable (instead of a dichotomous outcome) and finds that security management has a

relationship with the log of the number of security events (β = 0.033, p < 0.001). All models vary

intercepts by day, firm, and event type (crossed).

4. Discussion

While the practice of security depends on the assumption that security management improves

security outcomes, the literature on security struggles to provide evidence of the assumption. While

companies reveal security incidents in response to regulatory requirements, they are understand-

ably reticent to share more than necessary. As a result, it can be difficult to empirically assess the

links between security management and security events outside of labs or a single company. Fur-

ther confounding the situation is the Hawthorne effect (Rothlisberger and Dickson 1939) — when

researchers place attention on a change in security management, security practitioners pay more

attention to what they are doing. A better approach would be to examine the effect of security

management practices when nobody is looking, and to do so across a large number of firms.

Our study does exactly that. Our data, gathered on a daily basis by a security monitoring

firm, consistently measures the basic level of security management in each firm, as signified by

the number of open ports detected on each day. It also measures the extent to which the firm

experiences four types of negative security events on that day. The power of our dataset rests in

the consistent measurement of this data across 480 large firms.

While the data is powerful, it also has complexity. Namely, the prevalence of each event type is

correlated across companies on a given day due to changing patterns of attack. They are correlated

within a firm across days, since firms rarely resolve security events instantaneously. Furthermore,

the prevalence of a given event type can be correlated with that of the other event types, either

within or across firms. Therefore, we used two distinct methods to improve estimates of the link

between security management and security events.

Hierarchical linear modeling of open ports against specific event types, using crossed days and

firms to address lack of independence of errors, finds evidence of a link for three of the four events:

botnet activity, potential exploitation, and unsolicited communications. (The event which did not

show a link, malware activity, is also the one least present in our dataset and also likely to be

associated with open ports on a company’s server.) However, this analysis did not account for

the correlation between events. An additional HLM analysis using crossed day, firm, and event

type finds an effect of security management on all four event types. As an additional test, Hidden
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Table 8 Effect of Security Management on Adverse Events (Robustness)

R1 R2 R3 R4 R5
Excluding Excluding Continuous

least attacked least attacked Firm Firm outcome
firms dates covariates covariates (log)

Fixed effects estimates

Constant −5.223∗∗∗ −5.753∗∗∗ −5.436∗∗∗ −5.588∗∗∗ 0.134
(0.901) (1.074) (1.150) (0.961) (0.123)

Open ports (log) 0.251∗∗∗ 0.234∗∗∗ 0.305∗∗∗ 0.261∗∗∗ 0.033∗∗∗

(0.011) (0.012) (0.012) (0.013) (0.001)

Employees (std.) 0.409∗∗∗ 0.431∗∗∗

(0.117) (0.119)

Assets (std.) 0.493∗∗ 0.495∗∗

(0.167) (0.167)

Sales / employee (std.) −0.469∗∗ −0.441∗∗

(0.147) (0.149)

Market value (std.) 0.362∗ 0.105
(0.170) (0.172)

Market value × Open ports (std.) 0.057∗∗∗

(0.005)

Random effect variance (σ2)

Day level 0.623 0.526 0.663 0.622 0.004

Firm level 4.173 6.554 4.017 4.108 0.260

Event type level 9.994 7.214 2.686 10.047 0.058

Fit statistics

Observations 474,444 476,468 411,264 411,264 564,220

Log likelihood −97,261.0 −89,651.9 −80,578.5 −80,508.4 −459,995.8

Akaike information 194,531.9 179,313.7 161,175.0 161,036.8 920,003.7

Mixed effect generalized binomial (logit) models (R1, R2, R3, and R4) or mixed hierarchical linear model (R5)
of the effect of security management activity on four security event types (botnet activity, malware activity,
potential exploitations, and unsolicited communication). Model R1 excludes 10% of the least attacked firms;
Model R2 excludes 10% of the dates with the least activity; Model R3 includes additional firm covariates;
Model R4 interacts market value and security management; Model R5 uses a log transformation of the number
of security event types. All models vary intercepts by day, firm, and event type (crossed). Observations in 480
firms from 1 July 2014 until 20 April 2015; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; standard errors in parentheses.
“(std)” indicates standardized variables for presentation.

Markov models exploit the longitudinal daily nature of our data. A two-state model shows that poor

security management significantly increases the likelihood of a firm’s transition from high security

to a low security state. Additional tests exploring higher numbers of latent states consistently

demonstrate this pattern.
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Our study is not without limitations. Data on security management and security outcomes is

difficult to obtain across large numbers of firms. Our measure of security management, namely

open ports, does not cover the full range of security management. It is a proxy for companies doing

basic levels of security management. Our study is also limited by the data gathering mechanisms of

the security monitoring service provider. Events such as DDOS or practices such as default admin

passwords cannot be detected by this provider and thus are beyond the scope of this research.

Finally, while the study examines practices and events at each firm each day, it does not examine

relationships to broad levels of attack across industries or to any events that could cause industry-

wide attention to security management. In our models, these effects would be addressed by the

crossed day, firm and event controls, but not examined directly.

Further research can examine the effect of particular high profile events on the security man-

agement of companies. It could also examine the extent to which event levels experienced in a

firm relate to announced incidents, or even to financial outcomes. Finally, we could supplement

this secondary data with primary data on security management, perhaps through surveys or other

methods. We are currently pursuing these research avenues.

5. Conclusion

Increasing costs of security management are leading to increased skepticism among senior executives

about the need to provide higher and higher levels of security funding. While the assumption

that security management improves security outcomes has face validity, it has been surprisingly

difficult to show empirically across a broad range of firms. Our study provides evidence that the

core assumption behind the practice of security is valid. Better security management does improve

security outcomes.

This finding is comforting, if not surprising. The main contribution of our work is that we are

the first researchers to show this link empirically in steady state across a large number of firms.

An additional contribution is showing the value of a data source which can capture the daily

security posture of hundreds of companies. We believe the methods and findings in this paper are

an important addition to the literature on security management. We hope our study will serve as

a foundation to further advance the theory and practice of security management.
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