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Abstract

We integrate two established modeling methods from disparate fields: mechanisms from the phil-

osophy of science literature and intrusion kill chain modeling from the computer security literature.

The result demonstrates that model accuracy can be improved by incorporating methods from phil-

osophy of science. Modeling security accurately is a key function in the science of security.

Mechanistic modeling of computer security incidents clarifies the existing model and points toward

areas for substantive improvement for computer security professionals. Additional models of com-

puter security incidents are translated mechanistically to compare results and to demonstrate such

modeling can be applied in multiple situations. This integration of philosophy of science and com-

puter security is sensible only by integrating new adaptations to mechanistic modeling, specifically

conceived to enable better modeling of engineered systems such as computers. The results indicate

continued integration of the fields of philosophy of science and information security will be fruitful.
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Introduction

Models are important to science and to rational inquiry more gener-

ally. In particular, “scientists use models to represent aspects of the

world for various purposes. On this view, it is models that are the pri-

mary . . . representational tools in the sciences” [1,p.747]. The purpose-

fulness of modeling is critically important. Computer Network

Operations (CNO) is the general term that encompasses attack, de-

fense, and exploitation using computer networks [2]. Our purpose in

modeling CNO by incorporating mechanistic thinking is to understand

intrusions more thoroughly and, ultimately, to reduce the damage and

disruption caused by CNO. Having such a model enables both better

incident response (IR) and better computer network defense (CND) be-

cause responders and defenders can more adeptly understand the situ-

ation by interpreting it via the model, despite the occasional

oversimplification. Network analysts may not think of themselves as

scientists, but they share goals such as finding explanations and causes.

As Hatleback and Spring [3] argued previously, analysts stand to bene-

fit from adopting techniques honed by scientists.

Our purpose is critically important in our modeling language

choice. For example, it may seem more natural to use a modeling

language like Unified Modeling Language (UML) since it is a com-

mon model to design computer systems [4]. UML and other soft-

ware engineering models are not incompatible with scientific

modeling via mechanisms, although work codifying an engineered

mechanism is nascent [3]. However, contrary to a systems engineer,

yet like a scientist, the security practitioner attempting to understand

an incident must build a model that includes physical, human, and

engineered elements. Also like a scientist, the security analyst must

form a descriptive model of how the world is working, unlike an en-

gineer, i.e. a designer, whose model goal is to satisfice particular

desired features of the design [5, p. 119ff]. Therefore, we choose to

adopt the language of contemporary scientific modeling rather than

software design, as the goals of the scientist more closely align with

those of the computer security analyst.

We propose to enrich the kill chain model [6] by integrating

well-developed modeling ideas from the literature on mechanisms in
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the philosophy of science literature. We do not claim that the kill

chain model is complete or perfect. Nonetheless, it is a common

model of CNO with enough detail to provide an instructive starting

point. Work knitting together security and philosophy is still young.

However, such work offers the opportunity to make the existing

modeling in security more robust.

The mechanisms’ literature in philosophy of science includes

areas such as what counts as a useful explanation and how to design

studies to arrive at explanations. For concreteness, we adopt the

consensus definition that “a mechanism for a phenomenon consists

of entities and activities organized in such a way that they are re-

sponsible for the phenomenon” [7, p. 120]. However, as a practical

matter, we are more interested in the threads of the literature related

to constructing useful explanations and designing our observations

to better discover mechanisms than more abstract threads. For ex-

ample, Machamer et al. [8, p. 2] introduce their seminal work with

“mechanisms are sought to explain how a phenomenon comes about

or how some significant process works.” Similarly, responders and

defenders try to explain an attack or discern how it works, in the ef-

fort to prevent future attacks. Philosophers working on mechanistic

explanation or description often see themselves as providing an ac-

count of how competent scientists solve complex problems and learn

about the world [9, p. 7]. One of our goals is to adapt this advice for

competent problem-solving to the security domain, in order to judge

where it may be helpful.

Prior work in security is largely compatible with mechanistic

modeling. Alberts et al. [10] identify five high-level processes within

incident management: prepare, protect, detect, triage, and respond.

Within each, the defender must have knowledge of the available

mechanisms (mechanisms to protect, mechanisms to detect, etc.) as

well as the likely mechanisms of attack. We focus on CNO modeling

as an example application because it provides this touch point into

many other security processes. Consistent translation across dispar-

ate specialties into a common parlance is an advantage of mechanis-

tic modeling in the sciences generally, and security work should

likewise benefit. For example, Basin et al. [11] incorporate physical

properties into security models; Liu et al. [12] incorporated attacker

objectives in network defense modeling to improve defense. By inte-

grating the modeling language of mechanisms from philosophy of

science, such varied research can be better integrated. A model of a

particular attack will be used differently by those implementing de-

tection technologies, which are forward-looking, than those who

implement response plans, which are backward-looking. But both

detection and response will want useful explanations of an attack,

and to be confident their explanations are consistent with each

other. The mechanisms’ literature offers advice for these tasks.

Mechanisms are comprised of entities and activities [8]. We de-

scribe the seven elements of the intrusion kill chain as activities. This

approach permits the CND analyst to think about the process in a

structured level of detail. We further propose that proper defenses

involve entities, modeled at the level of detail of the kill chain. This

modeling choice presents a coherent picture of the devices used by

adversaries and defenders as entities. This insight makes two contri-

butions: one specific to the kill chain and one to the security commu-

nity broadly. The specific contribution of thinking about this

process mechanistically is importing the detailed modeling and de-

sign of scientific observations to enrich our CND and IR under-

standing of adversary CNO. The broader contribution is to

introduce CND thinking to mechanistic modeling, thereby improv-

ing communication among network security professionals in differ-

ent specializations. The purpose of both contributions is to enable

better network defense by operators, analysts, researchers, and

scientists.

The methodological differences between forensic cybersecurity

and descriptive cybersecurity will need to be explored. This distinc-

tion has been elucidated for other disciplines with a forensic and

traditional science subfields, such as geological science [13]. Both

fields benefit from adopting better modeling from modern science

because even though the methods diverge, the modeling language

and jargon used in forensic versus descriptive science within a field

often is quite similar since the domain of expertise is the same. The

model of attacks used as an example in the following sections is tar-

geted at forensic cybersecurity analysts as they investigate an inci-

dent, and so this subfield is the primary focus of this article. An

example of descriptive cybersecurity science is investigating the

existing blacklist ecosystem in order to understand and contextual-

ize the many other activities or investigations that use blacklists, as

done by Metcalf and Spring [14]. Both descriptive and forensic

cybersecurity stand to benefit from integrating mechanistic model-

ing, however, we take the example of forensic cybersecurity because

existing work in that subfield is richer. There is a further synergistic

benefit to both descriptive and forensic cybersecurity in that if both

can speak the same modeling language, namely mechanisms, then

the communication between the two subfields will be easier and

faster, hence advances in one can be more quickly adopted and im-

pact the other.

There are various tasks in security which are at heart problem-

solving tasks to which our project is applicable. For concreteness,

consider the exploitation mechanism of a drive-by download, an ex-

ample we use later in Fig. 4. A practitioner doing each activity, to

prepare, to protect, to detect, to triage, and to respond [10] will em-

phasize different questions given the mechanism for a drive-by

download. A detector may ask what aspects of the mechanism dis-

tinguish it from benign traffic. A preparer may ask how commonly,

and what sorts of, adversaries tend to use drive-by downloads to de-

termine resource allocation to the protectors and detectors. And so

on. This example highlights an important feature of mechanistic ex-

planation: mechanisms are composable and arranged in a loose hier-

archy of levels. We select examples throughout to demonstrate the

composability of mechanisms in security. These features are promin-

ent in the success of mechanistic explanation in neuroscience [15],

as we introduce in Section 3. Both the detector and preparer natur-

ally take advantage of this feature; the detector asks about lower-

level details that are distinguishing, and the preparer asks about

higher-level details of actors in the way that Caltagirone et al. [16]

does. This example also highlights the way in which a single mech-

anism is not a silver-bullet explanation, but rather contributes to a

network of improved understanding.

The intrusion kill chain model that is introduced in Section 2 is

not the only formulation of attack steps or phases. For example,

Bejtlich uses “Reconnaissance, Exploitation, Reinforcement,

Consolidation, Pillage.” Howard and Longstaff [18, p. 16] codified

a “computer and network incident taxonomy” that also has seven

major parts: Attackers, Tool, Vulnerability, Action, Target,

Unauthorized Result, and Objectives. Much of our application of

mechanistic modeling is equally applicable to other descriptions, as

we demonstrate in Section 6. We demonstrate mechanistic modeling

using the kill chain model; but a robust mechanistic representation

of computer network security incidents would also incorporate

other sources. When we translate models into mechanistic models

we often find explanatory gaps. Mechanistic models are well suited

to assist the investigator in finding such gaps, which is one argument

in favor of using them. We propose refinements to both Hutchins
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et al. [6] and Howard and Longstaff [18] that bridge these explana-

tory gaps and provide a more robust model of CNO.

We begin with a summary of the relevant seminal papers:

Hutchins et al. [6] on intrusion kill chains in Section 2; and

Machamer et al. [8] on mechanisms in Section 3. Section 4 provides

motivation for knitting the models together. In Section 5, we move

forward with unifying the two models. Section 6 provides an ex-

ample of incorporating the kill chain model of attacks into more

coarsely-grained models of CNO incidents, and Section 7 presents

an example of incorporating more finely-grained mechanisms to de-

tail a specific activity of the kill chain; together these examples dem-

onstrate the connective explanatory power of mechanistic modeling.

Section 8 discusses adding probabilistic details to mechanistic mod-

els. Section 9 outlines some foreseeable difficulties and references

existing solutions. In Section 10, we offer possibilities for future

work and concluding remarks.

Kill chains

In the intrusion kill chain model, adversaries execute intrusions in

discernible stages or steps. The seven defined stages provide the inci-

dent responder or CND architect with a framework for reasoning

about intrusions. It is best to detect an intrusion at the earliest pos-

sible stage. The model provides some clarity with respect to defining

“early,” namely as fewer stages have been completed, and it also

provides ready advice for responding to and measuring activity at

each stage. The stages defined by Hutchins et al. [6, pp. 4–5] are as

follows:

Reconnaissance – Research, identification and selection of tar-

gets, often represented as crawling Internet websites such as con-

ference proceedings and mailing lists for email addresses, social

relationships, or information on specific technologies.

Weaponization – Coupling a remote access trojan with an exploit

into a deliverable payload,. . . Increasingly, client application

data files such as Adobe Portable Document Format (PDF) or

Microsoft Office documents serve as the weaponized deliverable.

Delivery – Transmission of the weapon to the targeted environ-

ment. [Three common] delivery vectors for weaponized pay-

loads. . . are email attachments, websites, and USB removable

media.

Exploitation – After the weapon is delivered to victim host, ex-

ploitation triggers intruders’ code. Most often, exploitation tar-

gets an application or operating system vulnerability, but it could

also more simply exploit the users themselves or leverage an

operating system feature that auto-executes code.

Installation – Installation of a remote access trojan or backdoor

on the victim system allows the adversary to maintain persistence

inside the environment.

Command and Control (C2) – Typically, compromised hosts

must beacon outbound to an Internet controller server to estab-

lish a C2 channel. . .. Once the C2 channel establishes, intruders

have “hands on the keyboard” access inside the target

environment.

Actions on Objectives – Only now, after progressing through the

first six phases, can intruders take actions to achieve their ori-

ginal objectives. Typically, this objective is data exfiltration . . .;

violations of data integrity or availability are potential objectives

as well. Alternatively, the intruders may only desire access to the

initial victim box for use as a hop point to compromise add-

itional systems and move laterally inside the network.

These seven stages can occur simultaneously for different at-

tacks, but they cover the set of common actions in a single attack.

Mechanisms

Mechanisms offer a way of formalizing how humans think about

how the world works through our scientific investigation.

Mechanisms are the prevailing way in which scientists describe what

it is that they are investigating, though there are some less common

alternatives. Philosophers of science provide the primary literature

that tracks the methodology of scientists. In that literature, the

mechanistic approach has gained favor over the previously domin-

ant logical empiricist tradition. See Glennan [19 ], and the references

therein, for an introductory account of the ascendance of the mech-

anistic approach.

We apply the mechanistic approach to computer security be-

cause it is effective. Fortuitously, the popularity of mechanistic

thinking in other scientific disciplines means there is a wealth of

existing work on how to use it to improve research. Using a similar

structure in computer security would make it easier to make use of

this existing literature.

The canonical account of mechanisms describes them as entities

and activities organized to explain changes [8, p. 3]. Importantly,

when a mechanism accurately describes a phenomenon, it permits

the prediction of other events [8].

As introduced earlier, the modern consensus definition is that “a

mechanism for a phenomenon consists of entities and activities

organized in such a way that they are responsible for the phenom-

enon” [7, p. 120 ]. Understanding the mechanism helps us explain

the phenomenon, predict it, and, in some cases, change it or prevent

it from occurring [1]. In this regard, security may be like medicine.

In medicine, statistical evidence is important, but explanations via

mechanisms “help to determine whether positive results of a trial

are due to genuine effectiveness or are simply a statistical blip;

[mechanistic] evidence is also crucial when designing and interpret-

ing a statistical trial, and when determining effectiveness in a new

population or a particular patient” [20]. These considerations also

apply in medicine when searching for a mechanism of cure when

only knowing the mechanism of disease. It is with analogous goals

and applications in mind that we seek to apply a mechanistic ap-

proach to cyber intrusions.

Illari and Williamson [7] elaborate on what it means to be re-

sponsible for a phenomenon, what counts as an entity or activity,

and what qualifies as sufficiently organized. “Responsible” captures

the diverse capacity of mechanisms in various tasks while maintain-

ing an appropriate form of productive regularity or stability. Entities

and activities are the result of decomposing an explanation into two

kinds of parts: physical bits and pieces (entities), and what they do

(activities).

Using “entity” and “activity” for these two kinds of parts of a

mechanism have rhetorical and mechanism-discovery benefits over,

say, considering activities to be merely properties of entities. For ex-

ample, in protein synthesis, the activity is relatively uninteresting

but the structural detail of the different entities matters a great deal.

On the other hand, in “systems biology explanations, the entities are

relatively similar to each other and the activities are vital to produce

the phenomenon” [7, p. 126]. In this preferred language, the map-

ping of entities to activities is unconstrained. Compare the term ac-

tivity to “capacities,” which implies a unary mapping (one entity per

capacity), or “interaction,” which implies a binary mapping (at least

two entities per interaction). Activity is explicitly chosen in order to

be agnostic to the arity of the entity–activity organizational

mapping.

Organization is quite broadly the relations among entities and

activities, initial conditions, and ongoing conditions that allow the
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phenomenon to be produced [7, p. 128]. Furthermore, organization

relates a mechanism as a whole to its components. Components may

be organized via relations of space (location, size, shape, motion),

time (order, rate, duration), or activity (e.g. feedback) [15, p. 189].

Specifying organization is usually an empirical task, with different

successful strategies in different fields.

Consider the mechanism for eating a sandwich. There are enti-

ties — the sandwich itself, teeth, lips, tongue, saliva — and activities

— biting, chewing, swallowing. To explain how to eat a sandwich,

one must organize these in the sensible way. Any haphazard combi-

nation of these activities is not likely to work; imagine if swallowing

came before biting, for example. If all the entities are not present,

most commonly teeth, the mechanism is also unlikely to proceed as

expected (unless a suitable replacement is found). In this example,

we see that mechanistic models may be used to explain a process

and/or to diagnose the source of malfunction.

As another simple example, take the mechanism that captures

the phenomenon of a seaside cliff eroding. There are entities —

the cliff itself, sand particles, wind, waves, stones — and activities

— colliding, blowing, churning. To explain how the cliff erodes, one

must organize these properly. Any haphazard combination of these

activities is not likely to work; colliding (i.e., of sand particles and

stones with the cliff) cannot occur before the blowing of the wind or

the churning of the waves, for example, because it is the very activity

of blowing and churning that enable the activity of colliding. The

elements of the mechanism provide good candidates for more care-

ful measurement, if we need to estimate rates of erosion for insur-

ance purposes, for example. However, without the qualitative

mechanistic explanation, one would not know what aspects are rele-

vant to measure.

Mechanistic models span multiple levels, which is to say that

each model has a different scope and granularity of detail. The

choice of level of explanation is roughly the trade-off between

breadth and detail that every model must make to remain useful. A

map on a scale of one kilometer per kilometer has no purpose; as

Lewis Carroll snarks about using such a thing, “the farmers ob-

jected: they said it would cover the whole country, and shut out the

sunlight!” [21]. Appropriate explanation is not just choosing the ap-

propriate breadth and detail for the purpose at hand, but also select-

ing the relevant items and providing appropriate linkages both to

broader and to more detailed mechanisms [15, p. 10]. With appro-

priate linkages, it is possible to acquire the appropriate granularity

for any task, to put a complex task in context, and to prioritize can-

didates for influencing a complex task. By providing a common lan-

guage for these linkages, the mechanistic account improves

communication and comprehension.

Craver [15, p. 1] notes that “explanations in neuroscience de-

scribe mechanisms, span multiple levels, and integrate multiple

fields.” We contend that information security is analogous to neuro-

science here. Craver works an extended example of the explanation

of spatial memory in neuroscience to capture important points

about mechanisms [15, ch. 5]. There are four levels of mechanisms

for spatial memory. The level of spatial memory as such is studied

by experimental psychologists testing rats learning to run mazes.

The level of spatial map formation is studied by physiologists

manipulating the computational properties of brain regions with

drugs or scalpel e.g. to localize spatial map formation to the hippo-

campus. The cellular-electrophysiological level is studied by neuro-

biologist to identify the synaptic relations among neurons that

contribute to the storage of spatial memory. Finally, the molecular

level is studied by biochemists to determine the chemical and elec-

trical composition of nerve cells that make such synaptic interaction

possible. There are many potential methods to define “level” in this

case. Craver argues against seven other methods (products, units,

causation, size, part-whole, aggregation, and spatial containment)

before concluding that the only suitable meaning is level of mechan-

ism, in the sense that a lower-level mechanism is an entity and/or ac-

tivity in the higher-level mechanism. Craver [15, p. 228] further

argues that the unity of the field of neuroscience can only be prop-

erly understood when we see it as “different fields integrat[ing] their

research by adding constraints on multilevel mechanistic explan-

ations.” Information security is likewise multidisciplinary, which

feeds our motivation that the analogy usefully holds.

Mechanistic modeling is creating and refining a model of phe-

nomena in question by so organizing the appropriate (models of)

entities and activities. A computer scientist may initially conceptual-

ize a mechanistic model as a sequence diagram, per UML, in that se-

quence diagrams also feature a set of entities and the activities

between them. However, mechanistic models are not, and should

not be, so strictly defined: mechanistic models must account for

both engineered and physical mechanisms, where “engineered mech-

anisms are susceptible to having their entities or their activities

changed during the course of the investigation at the will of a ra-

tional decision-making entity” [3, p. 445]. Physical mechanisms in-

clude astrophysics as well as neuroscience: one cannot consciously

stop neurons firing to form spatial memories any more than con-

sciously will a supernova. Information security and forensics also

need to account for the general uncertainty of human investigation

of the physical world. The practice of mechanistic modeling is a gen-

eral account of what good models in the sciences have in common.

There is not a more formal definition than the above from Illari and

Williamson [7]. Yet, using this definition, mechanistic modeling can

be general enough to capture all of a scientist’s or security analyst’s

information about a phenomenon, provide guidance on what types

of experiments and observations to prioritize based on a current

model, and provide structure to what features we expect in a good

model.

Why knit these together?

Models are important; they play many roles. In quantitative ana-

lysis, models such as mechanistic models serve many purposes that

are needed in computer-network security work. Good models help

the investigator estimate effects, measure where more precision is

needed, impute or fill in missing data, and design tests to determine

causation [22]. Equally important, models, and specifically mechan-

istic models, serve a critical purpose in enabling and improving com-

munication among professionals in a complex field. Bechtel and

Richardson [9] argue persuasively that scientists explain phenomena

mechanistically at least in part because it is an effective search heur-

istic. The two main strategies are decomposition of the explanatory

task into manageable subcomponents and localization of activities

to specific subcomponents. This approach is coarse, and may fail,

but failures are instructive and inform a revised subsequent attempt

[9, pp. 23–24]. The literature on mechanisms is where we find the

broad discussion of how to improve discovery and communication

of complex concepts. This literature can help the diverse group of re-

searchers, policy makers, and operators to move security product-

ively toward “a story constrained by all the empirical contact with

the world that ingenuity can design; a story that we can understand,

manipulate and communicate, that we can use, and use collabora-

tively, to help us manipulate, control and predict the world—and

lead science to better knowledge” [23, p. 253]. This project rings
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true in security as clearly as anywhere. Security has a unique constel-

lation of challenges to which we need to adapt mechanistic

modeling.

Before moving forward, we shall defuse the argument that the

constellation of challenges in security is unique and other scientific

practices are inapplicable. If this were so, perhaps lessons from other

sciences such as mechanistic modeling would be utterly unhelpful.

That the constellation of challenges to security is unique is given,

but unmoving; a unique set of challenges is a defining characteristic

of any scientific field. Foremost, (i) computer security includes active

adversaries that respond to defender actions; however, economics

and game theory address this same adversarial nature, as does diag-

nostic psychiatry. Another common challenge is (ii) the rapidly

changing targets that security must discover; yet pathogens studied

by virologists evolve to bypass vaccines on the order of months. A

further challenge is (iii) that computer security studies engineered

artifacts, rather than natural systems; archeology, anthropology,

and forensic criminologists all study engineered artifacts using scien-

tific methods. In computing generally, we have (iv) the rapid change-

ability of software; to account for this Hatleback and Spring [3]

argue for heuristically separating engineered from physical mechan-

isms, as defined in Section 3. But this separation is to enable clearer

communication with and integration of scientific practice from

other disciplines wherever possible, not to deter it. Another chal-

lenge is (v) the detection of rare events and managing the base-rate

fallacy [24], but safety analysis of analog systems like nuclear power

plants have similar challenges. Finally, security faces challenges of

(vi) perverse economic incentives, such as moral hazard and tragedy

of the commons [25], similar to challenges in public policy and

economics.

With these six challenges, computer security is certainly diverse

and difficult. However, as our examples show, computer security

does not face any challenge that some other science does not face as

well. Therefore, it is reasonable to attempt to fuse the mechanistic

modeling approach employed in many other sciences with security.

Adversaries will of course intentionally attempt to subvert our de-

signed mechanism discovery tools and processes. Some mechanisms

will be easy to change. But even with engineered mechanisms, such

as the TCP/IP suite, there are certain tasks the adversary must do to

successfully communicate. That mechanisms are changeable does

not make them useless to our understanding and planning. Relatively

changeability may, and should, inform how we target our studies and

interventions. For example, Spring [26] suggests domain-name take-

down strategy based on the adversary’s relative ability to change vari-

ous features of the Domain Name System (DNS).

Mechanistic modeling of CNO will help investigators make bet-

ter predictions via assistance with quantitative and qualitative repre-

sentation. A model represents what the investigator believes

happens or happened in the world; in philosophical jargon, it repre-

sents the phenomenon [27]. Scientists and computer forensics ana-

lysts are the same in that both are investigators attempting to build

accurate and warranted models. Mechanistic models of phenomena

can readily have (subjective) probabilities assigned to whether an ac-

tivity will proceed in one way or another, although in our examples

below we simplify the diagrams by omitting probabilities. A mech-

anism may model using just a causal Bayes net or a graphical causal

model. For example, the mechanisms of human cognition and learn-

ing are explained well as a graphical causal model [28].

A CNO investigator often needs to make decisions with limited

resources. Time and/or information may be limited. For example,

during a DDoS (distributed denial of service) attack, the incident re-

sponder has little time to decide if the DDoS is a distraction to cover

for a more serious unauthorized access and take protective meas-

ures. This process is a different kind of limited resource than a foren-

sics examiner making a retrospective damage and exfiltration

assessment, where information of the initial infection vector has

been rolled off logs if captured at all. Both use mechanistic explan-

ations as evidence in their decisions. Both also use other information

in their decisions, such as risk tolerances and their prior beliefs

about what is most likely or common.

The example of the incident responder already implicitly in-

cludes mechanistic explanation in the decision-making. The re-

sponder knows that one mechanism adversaries use to achieve

objectives is a series of attacks, one noisy and harmless and one

quiet and damaging, to distract defenders from the true harm. If re-

sponders know this is a possible mechanism, they are more likely to

make decisions and direct their observations to seek evidence of this

second, covert attack. This particular attack mechanism is not as

useful to the forensic examiner, who cares more about what valu-

able information was stolen than how the adversary got in. In this

case, knowledge of possible mechanisms of data hiding and exfiltra-

tion will guide the search for evidence of harm, such as steganogra-

phy, HTTP-over-DNS, peer-to-peer botnets, etc. In both cases, as

described earlier in the case of medicine, evidence of possible mech-

anisms is crucial when designing and allocating resources to future

observations, trials, studies, and investigations. The details change

with the context. We explore the example of CNO because it applies

to a wide variety of security contexts, albeit in different ways as

demonstrated by the example contrasting the incident responder

and the forensics examiner. In practice, this should be comple-

mented with knowledge of mechanisms of defense, such as firewalls,

IDS, access controls, network partitioning, encryption, and so on.

As in medicine, knowing how a patient becomes sick is valuable to

knowing how to cure them, but it is not the same as knowing how

to cure them. By integrating information security with the existing

mechanisms literature, such lessons as these from medicine can be

brought to bear on analogous problems in security.

Utilizing a mechanistic model will assist a CNO investigator to

assign subjective probabilities to capture the investigator’s beliefs on

what can happen or has happened. What kind of model the investi-

gator will build depends on her goal; e.g. a CND goal will aim to

mitigate the vulnerabilities that allowed the adversary in, whereas

law enforcement may have a goal of attributing the attack to an

agent and apprehending him or her. Current best practices in CNO

attribution is summarized in the diamond model by Caltagirone

et al. [16], while best incident management and recovery practices

are well summarized in Alberts et al. [10] and Shimeall and Spring

[29, ch. 15]. None of these approaches provide a method for incor-

porating or mitigating uncertainty of the investigator’s beliefs dir-

ectly in the model. Caltagirone et al. [16, p. 54] recognize their

model is “cognitive and highly manual” and leave as future work

improvements to reduce this problem; the ability to incorporate the

formal modeling of causal Bayes nets via mechanistic modeling is

one such improvement. The CND models do not explicitly call for

this improvement as future work, but stand to benefit in the same

way. Section 8 sketches how to integrate subjective probability into

the relevant models.

Biology provides a good example of effective use of models for

improving professional communication among diverse fields. The

kill chain is similar to a model that a primary care physician might

use to assess a single patient; it models CNO at a granularity of one

system. However, different problems and different purposes require

mechanisms at different levels of granularity. The mechanisms use-

ful for a patient’s day-to-day care do not help a molecular biologist
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understand the mechanism by which poison ivy makes a rash; that is

a different level of granularity. Likewise, an epidemiologist operates

with a different, more coarse-grained, mechanistic view to under-

stand disease within a population. All three perspectives of the

world are simultaneously true and inform one another, but all three

perspectives have different purposes. Due to human limitations, it is

difficult for any one person to excel at understanding even one per-

spective in sufficient depth to advance it. Thus there are different

professional fields, specialized essentially in different mechanistic

granularities. The mechanistic model in these fields of science pro-

vides a crucial link to facilitate encapsulation of knowledge and pro-

fessional communication.

Thinking about problems mechanistically improves communica-

tion among specialized individuals because it helps codify how the

different perspectives interact with each other. A thorough modeling

approach also helps identify when elements are not incorporated in

the model; a mechanistic approach to modeling would help identify

areas where an adversary could step around an existing security

model to bypass it. We also argue that computer security would

benefit from a more robust understanding of modeling because the

field is now sufficiently complex that it surpasses the understanding

of any single individual [30]. Importing structures already developed

by philosophers of science, namely the mechanistic approach, would

provide the needed modeling structure. We demonstrate this im-

provement by grafting the mechanistic modeling approach onto the

intrusion kill chain model from the security literature [6].

Toward a unified model

The process of creating a unified model is at least as important as

the model itself. As investigators and scientists gather more data,

models change. But the process of refining a model changes much

more slowly. We therefore describe not just the result, which always

can be further refined, but the thought process by which we move

toward a unified model. The kill chain is one of many possible start-

ing points and is used here as much as an instructive starting point

as a truthful model.

CNO is not the only aspect of cybersecurity that would benefit

from mechanistic modeling. The Bell and LaPadula (BLP) model

[31] for multilevel secure systems could cleanly be cast as mechan-

isms: subjects and objects are two types of entities, and activities are

the classic actions initiated by subjects such as read and write. BLP

then describes what set of mechanisms lead to the desirable behavior

of a secure system. Incident management processes [10] are easily

cast as mechanisms, with activities such as detect, triage, and miti-

gate. Cyber incident attribution [16] and cyber threat intelligence

[32] also use models that could be translated to a mechanistic

model. A model of CNO is a good starting place, however, because

attacks are complex enough to provide interesting challenges while

remaining tractable.

At a coarse level of granularity, a unified model is simple: cast

the kill chain as a mechanism. The entity acting in each case is an

“adversary.” The activities are the seven steps provided in Section 2.

These activities each require an entity as an object as well as an

actor, and so at a coarse granularity, the object of the activities is

the “target,” or defender.

But this coarse-grained description abstracts away too much in-

formation to be useful. For example, the adversary and the target

are not the only entities. There are finer-grained entities that are ne-

cessary to map the kill chain model accurately as a mechanism, such

as “remote access trojan” ([33], see” backdoor” and” Trojan“),

“exploit” [34], and “victim system” ([33], see” system compo-

nent,“” system entity“). These entities have coherent definitions in

the works cited, despite the fact that the kill chain paper does not de-

fine them or reference definitions [6]. Employing the mechanistic

understanding helps make clear the relationship between these enti-

ties in the kill chain. Figure 1 provides a conceptualization of the

seven steps in the kill chain mechanism.

The entities and activities in Fig. 1 are labeled with subscript e or

p to indicate whether the element is engineered or physical, as

defined in Hatleback and Spring [3]. Some elements have both en-

gineered and physical components, subscripted ep, and these elem-

ents are good candidates for deeper exploration to tease apart which

aspects are engineered and which are physical.

The activities, as arrows labeled 1 through 7 in Fig. 1, represent

the seven steps of the kill chain provided in Section 2. The diagram

provides a richer interaction describing the phenomenon. First, ad-

versary A performs reconnaissance on target T. Second, the adver-

sary weaponizes exploit delivery code E. Third, the exploit is

delivered to the target. Fourth, weaponized code E exploits victim

system C. Fifth, code E installs remote access code of some kind, R,

on the victim system. Sixth, the remote code communicates over a

command and control channel with the adversary. Seventh and

lastly, the adversary completes actions on objectives against the vic-

tim system.

The activities labeled as having both an engineered and a phys-

ical component are “reconnaissance (1),” “command and control

(6),” and “actions on objectives (7).” Reconnaissance is defined as

Figure 1. Rough mechanistic diagram relating the entities and activities involved in an intrusion, following the kill chain model of intrusions. The large entities are

adversary A and target T; the medium-sized entity is target computer C; the small entities are weaponized exploit E and remote access trojan (RAT) or some mali-

cious code R. The seven activities are labeled for the seven steps in the kill chain Hutchins et al. (6): reconnaissance (1), weaponization (2), delivery (3), exploit-

ation (4), installation (5), command and control (6), actions on objectives (7).
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“Research, identification, and selection of targets” [6, p. 4], where

research and target selection are human activities with underlying

physical mechanisms based in psychology or economics.

Identification of targets is usually an engineered activity that re-

quires scanners or other computer tools, such as the open-source

Nmap [35]. Scanning also has limitations based in physics, such as

the speed of light and bandwidth, which impact the volume of scan-

ning that adversaries attempt.

Similar considerations are important for understanding “com-

mand and control” and “actions on objectives.” Command and con-

trol may involve “hands on the keyboard” and human limits and

choices, thus introducing physical mechanisms. Even if no direct

human control is used, information theory limits control channels,

information density, etc. (How elements such as algorithms should

be considered with respect to the “engineered” versus “physical”

distinction is not yet clear; this is an area of current work that

impacts the engineered choices of the control channel.) “Actions on

objectives” may mean data exfiltration, which is affected by phys-

ical mechanisms such as bandwidth limitations. However, if the ac-

tions on objectives include any effects on the physical world via

cyber-physical systems, such as damage or disruption of services,

physical mechanisms become quite relevant.

Constructing the model in this way makes clear both the areas in

which we have more detail and the areas in which more detail is

needed. A target likely has multiple types of systems, system compo-

nents, etc., arranged in a system architecture. The target should

know its own architecture well enough to list these entities; if it does

not, it should prepare better, as recommended by (for example)

CERTVR incident management best practices [10]. One can imagine

defining more fine-grained descriptions of what “exploit” means

against each of these components. In some cases, this work is done

and is simply not yet cast as a mechanism. Relevant work includes

the common weakness enumeration (CWE) [36] and common vul-

nerability enumeration (CVE) [37].

Mechanistic modeling also helps identify what is not known. If

the defender needs to complete an assessment of an incident, a

mechanistic diagram of what ‘could be’ known compared to an as-

sessment of what is known produces a list of important data items

to research to better diagnose the intrusion. Perhaps the remote

“command and control” and delivery [3] activities are known, but

the adversary (A), exploit (E), and “actions on objectives” are not.

Certain types of adversaries may use a certain control channel,

knowing this activity helps identify the adversary and his or her po-

tential goals. Although this line of reasoning is precisely the kind of

disciplined thinking encouraged by the kill chain analysts [6,16],

applying the mechanistic approach helps clarify which entity is

doing what activity to which target and what the defender knows

about those entities and activities.

A complete diagram of every possible computer network attack

could not be readily comprehended by a human. Similarly, a max-

imally detailed view of how the human body works cannot be read-

ily comprehended and used by a single doctor. Biological sciences

have developed the capability to implement more fine- or coarse-

grained mechanistic perspectives as needs require. If computer secur-

ity and intrusion analysis likewise are to develop such a way of

studying its complex system at different granularities as needed, the

information must be organized to facilitate that goal. The mechanis-

tic model has proven effective for other sciences to achieve this goal,

and implementing such an approach in computer security may pro-

vide the means to achieve it. Casting important models, such as the

kill chain model, as mechanisms is an important first step.

Different levels of granularity already are recognized in com-

puter security. For example, there are large-scale network analysts,

and host-based analysts. The Open Systems Interconnection (OSI)

layers are a form of granularity levels with abstraction and encapsu-

lation [38]. But the difficulty of communicating important informa-

tion across levels of abstraction and among professionals with

different specializations has not yet been overcome. By importing

mechanistic thinking and attendant good scientific practices, we be-

lieve these communication deficiencies can be overcome.

A final benefit of unifying the two models involves the identifica-

tion of areas for improvement. For example, delivery (3) is defined

as “Transmission of the weapon to the targeted environment” whereas

exploitation (4) is “after the weapon is delivered to victim host, exploit-

ation triggers [malicious] code” [6, p. 4]. In Fig. 1, a gap exists between

3 and 4, since the target is different, though the entity acting appears to

be the same. Thus, the approach permits us to question whether the def-

inition of delivery is accurate or whether there is an additional activity

describing how the weaponized code transits the target environment to

get to the victim system. Gaps such as these are more easily identified

when thinking mechanistically, since one goal in a complete mechanis-

tic description is identifying explanatory gaps [8, p. 3].

We propose that delivery (3) is better understood as one of two

activities, one for engineered targets and one for human targets. In a

phishing email, there is a malicious link or file delivered to the human’s

email inbox. However, the exploitation (4) does not occur unless the

human is tricked into opening the malicious content. For a clear ex-

ample of delivery to a purely engineered target, consider the old ping-

of-death vulnerability: as soon as the target computer received the mali-

cious packet, it automatically processed it and crashed. Therefore, we

propose that deliveryp, where a human is in the loop as the target, is a

distinctly different activity than deliverye, where a machine will be ex-

ploited automatically without human action. We call this human-

centric delivery a physical mechanism because it depends on human

psychology and vulnerability to trickery, which are physical mechan-

isms, despite the fact that the medium is electronic [3]. Deliveryp may

have, but does not require, a deliverye activity that occurs at the same

time or immediately afterward. For example, if during deliveryp the

human opens a malicious file, there is a deliverye action that the file exe-

cutes to exploit the human’s machine. However, in some cases the

human simply may divulge a password or other credential which then

directly leads to exploitation by the adversary. In such a case, only the

human, not a machine, has been tricked, and so no engineered delivery

has occurred. In the case of such a deliveryp which only carries informa-

tion back to the adversary and does not have a subsequent engineered

delivery activity, there still appears to be an explanatory gap. We would

model this as an information flow back to the adversary as part of the

more detailed specification of the delivery activity; Fig. 2 hints at this

with a bidirectional arrowhead on the line for deliveryp that is open, ra-

ther than filled black, to show it is present for only certain specifications

of the activity. Figure 2 demonstrates this revised mechanistic diagram

noting this branched path for delivery with dashed lines. The code to

generate Figure 2 and Figure 4 is available in the Appendix.

This example of identifying a gap in the explanation warrants

further exploration. One may ask how much the mechanistic ap-

proach to modeling has actually enabled this gap-finding, and how

valuable finding gaps is. The model brings this gap to the fore quite

naturally, not the subject-matter expertise needed to create the

model. This fact is obvious because we have only translated the

existing expert-created model into a mechanistic language. By doing

this translation, the gap is readily apparent, when it was not before:

there is no activity linking the effect of delivery of an exploit and the

installation of the malicious code. Now that this is clear, we security
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experts as scientists can posit what fits in that gap: the user clicking

a link, bypassing a warning, viewing an email with a malicious font,

or perhaps automated system action. While the content of the model

and improving the model both require subject-matter expertise,

translation into a mechanistic model, at the very least, provides a

check on the explanatory soundness of our models by allowing

ready inspection for gaps.

Incorporating other CNO models

Other CNO can be modeled in a way similar to what has been

undertaken here with the kill chain. Some of these models will con-

flict with aspects of the kill chain. By translating multiple models into

the same mechanistic language we can better compare them, extract

the better parts, and implement the best aspects toward our unified

model. The Bejtlich [17] model of “Reconnaissance, Exploitation,

Reinforcement, Consolidation, Pillage” nearly matches the kill chain,

except it is more coarse-grained. The attacker is assumed, not explicit,

and the three steps in the kill chain of weaponization, delivery, and

exploitation are subsumed into just “exploitation.” “Reinforcement”

is synonymous with “installation,” and “pillage” is synonymous with

“actions on objectives.” “Command and control” and “consolida-

tion” may seem to differ, but consolidation also means the control of

compromised assets.

The Howard and Longstaff [18] model is more difficult to recon-

cile with the kill chain mechanistic model. This difficulty seems to

arise because the Howard and Longstaff model involves “incidents,”

which are comprised of one or more attacks, whereas the kill chain

models only single attacks. One potential solution is to model a sin-

gle attack as a sub-mechanism within the larger mechanism of an

“incident.” Thus, the modeler might stipulate that there are two

competing models for attacks, but that the model of incidents pro-

vided by Howard and Longstaff is unique. The modeler could make

use of either model, but confusion could arise if the modeler does

not note that what the kill chain calls “objectives” are what

Howard and Longstaff call “unauthorized results,” and what

Howard and Longstaff call “objectives” are something else entirely:

human objectives such as financial gain or glory.

The taxonomy of Howard and Longstaff already contains cer-

tain features of the mechanistic way of thinking. The taxonomy pre-

sents a temporal ordering of items for an incident, namely

“Attackers -> Tool -> Vulnerability -> Action -> Target ->

Unauthorized Result -> Objectives” [18, p. 16]. The taxonomy

groups these items usefully; “events” are made up of just the

“Action -> Target” sequence. “Attacks” stretch from the “tool” to

the “unauthorized result.” Thus, it already includes the flexible

granularity of the mechanistic approach; an incident could also be

modeled as “Attackers -> Attack -> Objectives” if a coarser granu-

larity were appropriate.

However, the Howard and Longstaff common language for inci-

dents can be clarified through the mechanistic approach by grouping

the taxonomy into entities and activities, and clarified further by

marking elements as engineered or physical. For example, an

“Action” is an activity. Examples of actions listed are “probe, scan,

flood, authenticate, bypass, spoof, read, copy, steal, modify, delete.”

In the context of computerized actions, these are all engineered activ-

ities. Preceding “Action” in the Howard and Longstaff model is

“Vulnerability.” A vulnerability is an entity that is usually associated

with a larger entity within which the vulnerability is a flaw. The given

classes of “vulnerability” are well-known in computer security: design,

implementation, and configuration. Design vulnerabilities are best

modeled as a physical entity, since they are based in mathematical,

physical, or information-theoretic limitations that were not properly

considered during design. Implementation and configuration vulner-

abilities are engineered entities, since they only exist within the com-

puter systems as implemented or configured incorrectly by humans.

The classification of items within the model can continue.

“Attackers” are physical entities; “tools” are engineered entities.

“Targets” are either physical or engineered entities. “Unauthorized

results” are engineered activities and are generally enacted by the

tools, which fit nicely with the mechanistic account that “entities

are the things that engage in activities” [8, p. 3]. Finally,

“Objectives” are a diverse category that includes physical entities

(financial gain) and physical/engineered activities (damage).

Figure 3 presents a coarse-grained mechanistic visualization of

Howard and Longstaff’s common language for security incidents.

Figure 2. Improved kill chain mechanistic diagram, where delivery (3) in Fig. 1 is replaced by two options, an engineered activity directly to the target (3e ) and a

physical activity through the human (3p ) with an optional secondary engineered delivery step (3:1e ).

Figure 3. Visualization of the common language for computer security inci-

dents Howard and Longstaff (18) as a mechanism, where "attack" is simplified

to one entity that can be explored in many ways, with sub-mechanisms, at a

finer granularity. One such sub-mechanism is described in Fig. 1.
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Since there are more entities than activities specified, mechanistic

models quickly identify some areas that need further detail. This

identification is an important benefit of mechanistic modeling. For

example, an adversary must “conduct” an attack. What that activity

entails should be specified. Likewise, with respect to how “attacks”

relate to “objectives,” attacks “achieve” objectives, although exactly

how this unfolds would benefit from further specification. Howard

and Longstaff discuss “success and failure” of objectives related to

whether the objective was achieved, but they provide no robust de-

scription of what this means. The mechanistic diagram highlights

the importance of understanding this activity in order to understand

the whole incident.

Mechanistic modeling also eases integration of other security re-

search that can inform CND planning. For example, [12, Fig. 2] use

a primitive kill chain-like model for attacks but graft a sophisticated

game-theoretic model of attacker intent [12, p. 89ff] onto it. By see-

ing these two elements as separable mechanisms at different granu-

larities, the analyst can upgrade the primitive attack model with the

more appropriate elements from Howard and Longstaff [18] or

Hutchins et al. [6]. At the same time, the attack models can benefit

because of readier access to a more detailed model of attacker intent,

which is currently absent therefrom. A game, in the formal sense, is

a model that can also be cast as a mechanism with the players as

entities and the details of each play as activities. A knowledge base

(or information set) is a feature of each player-entity; payoffs or out-

comes can be features of each activity. We do not suggest that every

equation of game theory be rewritten as arrow diagrams. Rather, we

offer this translation to explain how the insights from existing

game-theoretic literature (see e.g. Alpcan and Başar [39]), using the

correct criteria [40], can be integrated into mechanistic modeling in

security.

On finer details

To be practically useful, a unified model will have to be able to ex-

plain real attacks and help investigations of them. Figure 4 models

an obfuscated drive-by-download delivered via a malicious ad net-

work, as described by Segura [41]. The mechanism is an example of

the “delivery” activity from the kill chain examined at a finer granu-

larity. This diagram focuses on the technical aspects of the delivery

to the user’s browser. The mechanism for how the ad networks se-

lect an ad for a user is left at a coarse grain, but could be modeled in

more detail if more data becomes available [42]. Identifying such an

item that requires more research because it is not clearly understood

is a benefit of mechanistic modeling. Like science, Internet security

is never done. But it helps to know where to go next just as much as

it helps to know what is already well understood.

Most entities and activities in Fig. 4 have their common English

meaning and the same modeling norms as Fig. 1 and Fig. 3. A special

case is “fetches,” which is transitive. That is, if the user’s browser

fetches a web page, which fetches an ad, which fetches a URL, the

browser has made an HTTP request to fetch all three of these things.

Modeling it this way preserves which resource redirected to which

other resource, while an arrow from the browser to each resource

would not.

It would be sensible to model the activities 3, 7, and 10 in Fig. 4

as yet finer-grained mechanisms. Activity 3 is target selection, which

is the “reconnaissance” step in the kill chain, so we put it aside for

now to focus on “delivery.” Likewise, activity 10 indicates the end

of “delivery” and the beginning of “exploitation.” Therefore, con-

sider activity 7, the calculation by which the JavaScript in the advert

de-obfuscates the malicious URL. In this case, the mechanism is to

use a regex to extract a string from the cookie and then unescape,

split, and reverse that string, which yields a JavaScript HTTP request

Figure 4. Diagram of an obfuscated drive-by-download delivered via a malicious web advertisement.
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to a URL to be fetched (step 8). This mechanism defines a class of

obfuscation techniques using cookies; the report by Malwarebytes

[41] goes one level of granularity finer and specifies items like the

specific cookie and regex used.

The creation of Fig. 4 demonstrates how we can use mechanistic

modeling to move fluidly between modeling granularities to make

sense of detailed cybersecurity events. Now our model can go from

specific obfuscation techniques, to how such techniques are used in

delivery of exploits via Fig. 4, to how delivery fits into attacks via

the kill chain, to how attacks fit into adversary’s human objectives

via Howard and Longstaff. This flexibility greatly helps the re-

searcher put fine-grained mechanisms into context, enumerate items

to measure to counter a threat, and identify specific mechanisms—

such as a URL obfuscation technique or ad delivery selection—for

further investigation.

Including subjective probabilities

When a forensic investigator is actually trying to understand an at-

tack, it is of course not so straightforward as a single path from ad-

versary to unauthorized result. The investigator will believe different

possible attack paths are more or less likely. We can model these be-

liefs in what phenomena are more or less likely using subjective

probabilities [43]. The added detail from subjective probabilities in-

creases the usefulness of mechanistic models. We call a mechanistic

model an investigator holds, complete with subjective probability

assignments, a “specified” mechanistic model, as opposed to a “gen-

eral” mechanistic model which we have been discussing up to this

point. The purpose of a general mechanistic model, and indeed the

purpose of the kill chain or Howard and Longstaff’s model of an in-

trusion, is to capture something useful about the pattern all, or at

least nearly all, attacks follow. Therefore, following the kill chain, if

an investigator observes an adversary successfully delivering mali-

cious code to the defender’s environment, then the kill chain model

provides a good next guess as to what to look for or expect next,

namely an exploit.

However, a practical network defender or investigator needs to

know which exploit to look for in order to find or stop it. The infor-

mation of “look for an exploit following a delivery event” restricts

the scope of phenomena to look for, and so has value. But it is not

sufficiently valuable to, by itself, allow CND work in practice. For

this the CND investigator can readily use a specified mechanistic

model; the added reasoning power of such a specified mechanistic

model provides some obvious and large benefits over using the exist-

ing models, as existing models do not easily capture this reasoning

on the investigator’s belief about the actual phenomena perpetrated

by the adversary.

Introducing the full spectrum of nuances included in the specified

mechanistic model and how they circumvent the issues encountered

with the general mechanistic model is beyond the scope of this art-

icle; we plan to describe them in detail as future work. But briefly

we sketch the intuition and the shape of the way forward. Above,

we mention that Howard and Longstaff [18] break down “action”

to “probe, scan, flood,. . .” and so on. In the language of investigat-

ing CNO attribution from Caltagirone et al. [16], these actions are

part of TTPs that we would expect different adversaries to use

against different targets. So the investigator has a prior distribution

on the set of actions for each type of adversary attacking each type

of defender. In general, the defender is fixed as the investigator or

the investigator’s organization, so the distribution is what each type

of adversary is likely to do. Types of adversary could be organized

by capability level, similar to Spring et al. [44], to make the number

of categories of adversary manageable. Many structured observa-

tions or experiments which do not immediately appear to bear on a

mechanistic model actually are important to set better or more real-

istic priors on expected mechanisms; see e.g. Metcalf and Spring

[14], Rasmussen and Aaron [45], and Kanich et al. [46].

Thus, practically, a CNO investigator benefits from mechanistic

modeling because it provides a way to organize her current beliefs

about adversary’s likely paths, and to reason about what evidence

would be necessary to support or condemn these hypothetical adver-

sary paths during the course of the investigation. Figure 5 demon-

strates an example notional prior distribution over the Howard and

Longstaff [18] action category for three adversary types. This corres-

ponds to an investigator being told, roughly, there was an unauthor-

ized action on the system by one of three adversaries. This is not

much of information, and thus there are lots of possible options.

The matrix captures that the investigator believes there is a 15%

chance that “adversary2” will attempt and succeed at a “bypass” ac-

tion. In general, Fig. 5 indicates scans are the most likely action, and

so with no other data or context this potential action is the most ra-

tional subject for immediate investigation. Of course, a real practi-

tioner knows the potential loss from a scan is very low, while data

modification by an adversary can be quite costly to fix, and such

considerations and background context would realistically figure in

to the investigator’s decision. The complexity uncovered by this

brief sketch indicates why a full development of specified mechan-

isms is out of scope presently and requires future work.

One element highlighted by this discussion is the need for the in-

vestigator to set starting likelihood values that are at least suffi-

ciently accurate for the purpose at hand; in statistics jargon, these

values are called priors, in philosophy of science jargon, it is called

realizing appropriate external validity. Whatever the term, the need

is genuine.

Overcoming difficulties

The kill chain model, and computer science generally, has not yet

adopted the modern mechanistic approach. Hatleback and Spring

[3] describe two potential pitfalls: (i) mechanisms in nature behave

regularly all or most of the time, whereas mechanisms engineered by

humans, such as computer code, are changeable more easily; and (ii)

there is inadequate existing literature in the philosophy of science

that investigate the demonstration that activities exist, which is a

problem because computer security focuses on searching out

Figure 5. Notional adversary action prior probability distributions based on

the Howard and Longstaff (18) classification of adversary actions. These pri-

ors are relative: the matrix does not sum to 1 in each column. If needed, they

could easily be normalized to sum to 1.
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unwanted activities. Both of these difficulties can be overcome, but

it will take a concerted effort and dedicated research program.

Addressing the changeability of engineered mechanisms requires

both philosophical and technical expertise. Nonetheless, both discip-

lines already have tools available to initiate the process.

In network security, there are devices that restrict communica-

tions and enforce security policies. An example policy is “only the

web proxy can connect to web sites, and other hosts have to talk to

the web proxy.” This verbal policy would have a technical imple-

mentation. The policy, once implemented, restricts the entities and

activities involved in communications. So, when thinking about

what mechanisms to be concerned about in an intrusion, network

security devices can help limit the set of mechanisms under consider-

ation. If the security policy can be designed to reduce the arsenal of

attack mechanisms available to the adversary, the changeability of

the mechanism matters less because the plausible selection of attack

mechanisms is reduced.

Unfortunately, computers today have a rather large attack sur-

face [47], which means the possible attack mechanisms are many

and the changeability of the engineered mechanisms matters.

However, considering these attack vectors as mechanisms likely will

help researchers identify common entities and activities, thereby pri-

oritizing attention for solutions. Mechanisms in fields such as im-

munology already account for some amount of changeability, and

so there should be some lessons available from, for example, experi-

mental practice on quickly evolving microbes. Computer security

has long sought to emulate certain aspects of immunology [48], and

using the same scientific language of mechanisms should assist in

identifying and transitioning relevant ideas between the two fields.

Economics also seems a likely source of lessons learned for observa-

tions and modeling of a quickly changing system. Indeed, the eco-

nomics of information security has had a dedicated conference for

some time (http://econinfosec.org/weis-archive/).

The literature on demonstrating that activities exist may be

sparse, but systems biology and computer security researchers do it

already. More attention to the problem should contribute some cur-

rent best practices in designing and reporting such observations.

One difficulty in computer security is that these good examples often

do not exist in traditional academic venues. Instead, they are found

in industry reports and blog posts. Speed of reporting is often a

higher priority than prestigious publication, due perhaps both to the

youth of the field and to the common urgency of action when threats

have immediate, Internet-wide effects.

Further research is needed to address some challenges. For ex-

ample, the diversity of academic disciplines involved likely will lead

to different people using the same or similar terms in different senses

or meanings. This phenomenon is not new. However, future work

could attempt to adapt computer-assisted semantics tools and stand-

ards to this problem, such as ontology repair developed for OWL

(Web Ontology Language) [49].

Conclusions

The intrusion kill chain is a useful model for CND, but models in

cybersecurity can benefit from refining a more structured approach

borrowed and adapted from other sciences. The mechanistic ap-

proach to modeling provides the template to be adapted to the grow-

ing information security field. The philosophy of information

science has unique problems that must be worked through as we

apply modeling techniques to existing information security work.

We have begun that work by identifying some of the ramifications

of applying the mechanistic approach to the intrusion kill chain

model and the common language for computer security incidents. The

mechanistic approach readily yielded refinements to both models.

There is still further work to be done in many respects, but this

initial work provides some guideposts for future work in modeling

security and applying mechanistic thinking via the philosophy of in-

formation science. Cybersecurity is now regarded by respected prac-

titioners like Dan Geer as being outside the comprehension of any

single expert [30], and so the community needs more structured

communication between experts for the field to be able to continue

to progress with the necessary speed and accuracy to continue to be

effective. Using mechanistic models will provide a richer and clearer

language for us to communicate and move the field forward.
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Appendix

The mechanistic diagrams in this article were created using Tikz in

latex. We provide the commands to create a sample of them here in

the hope it will help others unfamiliar with any drawing method get

started. There are many other tools that could be used to make these

diagrams.

First, in the preamble of the document, we have:

\USEPACKAGE{TIKZ}

\USETIKZLIBRARY{ARROWS}

\TIKZSET{>¼TRIANGLE 60} %MORE VISIBLE ARROWS

\USEPACKAGE{PGFPLOTS} % RECOMMENDED

\PGFPLOTSSET{COMPAT¼NEWEST}

For Fig. 2, we write the following inside a float environment:

\BEGIN{TIKZPICTURE}

\TIKZSTYLE{BIGCIRC}¼ [CIRCLE, MINIMUM WIDTH¼96PT, DRAW, INNER

SEP¼8PT]

\TIKZSTYLE{SMCIRC}¼ [CIRCLE, MINIMUM WIDTH¼18PT, DRAW, INNER

SEP¼0PT]

\TIKZSTYLE{MEDCIRC}¼ [CIRCLE, MINIMUM WIDTH¼56PT, DRAW, INNER

SEP¼4PT]

5\NODE[BIGCIRC][LABEL¼ {BELOW:$A_P$}] (ADVERS) AT (0,0) {};

\NODE[BIGCIRC][LABEL¼ {BELOW:$T_P$}] (TARGET) AT (7,0) {};

\NODE[SMCIRC] (ADVWEAP) AT (.5,.5) {$E_E$};

\NODE[MEDCIRC] (TARGETPC) AT (6.6,0) {$C_E$};

\NODE[SMCIRC] (RAT) AT (6.3,-.4) {$R_E$};

10\DRAW[->] (ADVERS) TO NODE [BELOW] {$1_{EP}$} (TARGET);

\DRAW[->][BEND LEFT¼80] (ADVERS) TO NODE [BELOW] {$2_E$}

(ADVWEAP);

\DRAW[OPEN TRIANGLE 90->][BEND LEFT¼52, DASHED][] (ADVWEAP)

TO NODE [ABOVE] {$3_P$} (TARGET);

\DRAW[->][BEND RIGHT¼75, DASHED] (TARGET) TO NODE [LEFT]

{$3.1_E$} (TARGETPC);
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\DRAW[->][BEND LEFT¼45, DASHED] (ADVWEAP) TO NODE [ABOVE]

{$3_E$} (TARGETPC);

15\DRAW[->][BEND LEFT¼25] (ADVWEAP) TO NODE [ABOVE] {$4_E$}

(TARGETPC);

\DRAW[->][BEND RIGHT¼60] (ADVWEAP) TO NODE [BELOW] {$5_E$} (RAT);

\DRAW[<->][BEND LEFT¼15] (RAT) TO NODE [BELOW] {$6_{EP}$}

(ADVERS);

\DRAW[->][BEND LEFT¼10] (ADVERS) TO NODE [ABOVE] {$7_{EP}$}

(TARGETPC);

\END{TIKZPICTURE}

And for Fig. 4 we write the following inside a float environment:

1\BEGIN{TIKZPICTURE}

\TIKZSTYLE{BIGCIRC}¼ [CIRCLE, MINIMUM WIDTH¼96PT, DRAW, INNER

SEP¼8PT]

\TIKZSTYLE{SMCIRC}¼ [CIRCLE, MINIMUM WIDTH¼18PT, DRAW, INNER

SEP¼0PT]

\TIKZSTYLE{MEDCIRC}¼ [CIRCLE, MINIMUM WIDTH¼56PT, DRAW, INNER

SEP¼4PT]

\NODE[MEDCIRC][LABEL¼ {LEFT:$BROWSER$}] (USER) AT (0,0) {};

6\NODE[SMCIRC][LABEL¼ {BELOW:$COOKIE$}] (COOKIE) AT (0,0)

{$C$};

\NODE[MEDCIRC][LABEL¼ {BELOW:$WEBSITE$}] (WEBSITE) AT (3,4) {};

\NODE[MEDCIRC][LABEL¼ {ABOVE:$AD�NETWORK$}] (ADNET) AT (8,3)

{};

\NODE[BIGCIRC][LABEL¼ {BELOW:$ADVERT$}] (ADVERT) AT (8,-1) {};

\NODE[MEDCIRC][LABEL¼ {BELOW:$JAVASCRIPT$}] (MALCODE) AT (8,-1)

{};

11\NODE[BIGCIRC][LABEL¼ {BELOW:$URL$}] (URL) AT (3,-4) {};

\NODE[SMCIRC][LABEL¼ {BELOW:$EXPLOIT$},TEXT WIDTH¼2CM]

(EXPLOIT) AT (3.3,-4) {$ANGLER�KIT$};

\DRAW[->] (USER) TO NODE [LEFT] {$1:FETCHES$} (WEBSITE);

\DRAW[->][BEND LEFT¼20] (WEBSITE) TO NODE [ABOVE]

{$2:REQUESTS�AD$} (ADNET);

\DRAW[->][BEND LEFT¼10] (ADNET) TO NODE [RIGHT] {$3:SELECTS$}

(ADVERT);

16\DRAW[->][BEND LEFT¼10] (WEBSITE) TO NODE [LEFT]

{$4:FETCHES$} (ADVERT);

\DRAW[->][BEND RIGHT¼80] (ADVERT) TO NODE [RIGHT] {$6:RUNS$}

(MALCODE);

\DRAW[->][BEND RIGHT¼10] (ADVERT) TO NODE [ABOVE]

{$5:PUSHES$} (COOKIE);

\DRAW[->][BEND RIGHT¼20] (MALCODE) TO NODE [LEFT]

{$7:USING�C,�CALCULATES$} (URL);

\DRAW[->][BEND LEFT¼15] (MALCODE) TO NODE [BELOW]

{$8:FETCHES$} (URL);

21\DRAW[->][BEND LEFT¼80] (URL) TO NODE [LEFT] {$9:HOSTS$}

(EXPLOIT);

\DRAW[->][BEND LEFT¼30] (EXPLOIT) TO NODE [LEFT]

{$10:COMPROMISES$} (USER);

\END{TIKZPICTURE}
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