
On the Effort for Security Maintenance of
Free and Open Source Components ∗

STANISLAV DASHEVSKYI, University of Luxembourg, Luxembourg
ACHIM D. BRUCKER, University of Sheffield, United Kingdom
FABIO MASSACCI, University of Trento, Italy

The work presented in this paper is motivated by the need to estimate the security effort of maintaining
Free and Open Source Software (FOSS) components within the software supply chain of a large international
software vendor. We investigated publicly available factors (from number of active users to commits, from
code size to usage of popular programming languages, etc.) to identify which ones impact three potential effort
models: Centralized (the company checks each component and propagates changes to the product groups),
Distributed (each product group is in charge of evaluating and fixing its consumed FOSS components), and
Hybrid (seldom used components are checked individually by each development team, the rest is centralized).
We use Grounded Theory to extract the factors from a six months study at the vendor. We report the results
on a sample of 152 FOSS components used by the vendor.

Additional Key Words and Phrases: Free and Open Source software, software vulnerabilities, security mainte-
nance

1 INTRODUCTION
According to a recent Black Duck study [18], more than 65% of proprietary applications leverage Free
andOpen Source Software (FOSS). This choice speeds up application development and flexibility [43]
as a FOSS component is often used “as-is” [52]. The price to pay is that vulnerabilities discovered
in a FOSS component may affect the application that consumes it.

As the security of a software offering depends on all components, FOSS should be subject to the
same security scrutiny of one’s own code1 and the relative security of selecting a FOSS component
over a proprietary one should be investigated [39, 40, 79] in order to have a fully secure supply
chain [60].

Yet, from the perspective of a software vendor who is consuming FOSS components, the question
on selecting the most secure (FOSS, outsourced, or self-developed) components, albeit an important
one, may not not always be the most pressing one. First, FOSS components may be the de-facto
standard (e. g., Hadoop for big data) and the end customers of the vendor expect them to be
used. Second, FOSS may offer functionalities that are very expensive to re-implement, so it is the
most economical choice [52]. Third, there might only be one FOSS component with the desired
functionality to chose from. Finally, some FOSS component might just have a license that is

∗Paper accepted for presentation in the Workshop on the Economics of Information Security (WEIS’18). A much shorter,
prelimnary version was also presented at ESSOS’16 [28]. This work has been partially financed by the European Union
under the FP7-PEOPLE-2012-ITN grant 317387 (SECENTIS), and the EIT Digital UNBIAS project Task ID 18213.
1For example, SAP, a large software manufacturer, runs static code analysis tools to verify the combined code base of its
application and the FOSS component, and audits the results [19].

Authors’ addresses: Stanislav Dashevskyi, University of Luxembourg, Luxembourg, stanislav.dashevskyi@uni.lu; Achim
D. Brucker, University of Sheffield, United Kingdom, a.brucker@sheffield.ac.uk; Fabio Massacci, University of Trento,
Italy, fabio.massacci@unitn.it.

© 2018

:2 Dashevskyi et al.

incompatible with the chosen business model (e.g., it might require companies to release their
source code).2

Another and often more interesting question is to understand which factors are likely to impact
the “security maintenance effort” of the selected FOSS component. Indeed, when a new security
issue in a FOSS component becomes publicly known, a software vendor has to verify whether that
issue affects customers who consume software solutions where that particular FOSS component
was shipped by the vendor. In ERP systems and industrial control systems this event may occur
years after deployment of the selected FOSS product (see Figure 2 in Section 3).
It is therefore important to understand which characteristics of FOSS components (number

of contributors, popularity, lines of code, or choice of a programming language, etc.) are likely
inducing security issues in these components. The impact of these characteristics may be significant
for the consumers of FOSS components, as these components may be used by hundreds of products.

Motivated by the need to estimate the efforts and risks of consuming FOSS in proprietary software
products of a large international software vendor, we formulate our research question as follows:
RQ Which factors have significant impact on the security effort to manage a FOSS component in

different maintenance models?
In this paper we propose and empirically test the factors that can impact the vulnerability

resolution process on three different maintenance models:
(1) The Centralized model, where vulnerabilities of a FOSS component are fixed centrally

and then pushed to all consuming products (and therefore the maintenance effort scales
sub-linearly in the number of products)

(2) The Distributed model, where each development team fixes its own component and effort
scales linearly with usage

(3) The Hybrid model, where only the least used FOSS components are selected and maintained
by individual development team

To validate this question, we first start with a grounded theory building process from a case
study at a multinational corporation, that identifies the key problem drivers. Then, by looking at
previous research, we consolidate the theory and its qualitative findings in order to identify and
sharpen the general theoretical issues that are broadly applicable to the field, as opposed to those
that may be idiosyncratic to the specific firm.

2 FOSS AND THIRD-PARTY COMPONENTS
To a consistent terminology, we provide an overview of the different kinds of software components
integrated by proprietary software vendors, as well as describe the place of FOSS among them. The
most important components types are as follows:

• Outsourced development and sub-contracting: components are developed by a different legal
entity based on a custom contract. As the software is implemented based on a customer
specific contract and is uniquely tailored to its business needs [88], the consuming party can
specify the required compliance, security guidelines as well as the support and maintenance
model. Depending on the contract, such components can be shipped in binary or in source
form.

• Proprietary (standard) software components: components are licensed from a third-party. For
this third-party, this is a standard offering, i. e., the same component is offered to multiple cus-
tomers. Thus, there is only a very limited room for, e. g., influencing the security development
processes at the supplier. Usually, such components are shipped as binaries.

2A notable example is the German Court decision on GPL infringement by Sitecom Europe in 2004 [42].

On the Effort for Security Maintenance of FOSS (WEIS’18) :3

• FOSS components: grant free access to the source code, as well as the freedom to distribute
modified versions, provided that certain restrictions with respect to their licenses are re-
spected [75]. There are many open source licenses that describe different legal aspects in
different ways, including the detailed conditions under which FOSS can be distributed.

FOSS components share aspects with outsourced development, subcontracting as well as with pro-
prietary standard software components. For example, FOSS components can be modified, adapted,
and maintained by the customer (they have this in common with outsourcing and subcontracting).
As proprietary standard software components, they usually provide a fixed set of interfaces and
functionality that consuming products need to be adapted to (instead of having a custom made
component that “just fits”).

2.1 What Makes FOSS Special?
Stol and Babar described the challenges of integrating FOSS components into proprietary software,
according to the past literature [84]. They identify maintenance among the most important chal-
lenges, which suggests that there may be no immediate costs while selecting FOSS components,
but costs will eventually emerge during the consumption phase as the natural phenomenon of
deteriorating software. Thus, one could expect that there is no need to handle them differently
from other types of third-party components. In practice, there are at least five aspects that are often
considered to be special3:
(1) The absence of initial costs for FOSS components might misguide developers to use them

without properly assessing their licenses [75]. In large companies, the legal check of the
software license and the warranty is part of the purchasing process. As FOSS is often just
downloaded from the Internet, it is more difficult for organizations to enforce these checks.

(2) In any case, FOSS components have to be integrated into the target application [89], which
increases overall costs due to additional development and maintenance activities [2].

(3) Most FOSS licenses contain rather strong “no warranty” clauses [75]. This often comes
together with the lack of a contractual binding maintenance model. Thus, when using
FOSS one needs to decide how this can be mitigated. This can be done either by entering a
commercial agreement with a company that offers support for FOSS components [30], or
by investing into in-house maintenance of the component. The lack of documentation in
FOSS projects [11, 84] prevent in-house developers from learning, thus increasing potential
maintenance efforts and costs.

(4) Proprietary software vendors are often unable to influence development processes and patch
release policies of consumed FOSS components [84]. Given that vulnerability patching is
prioritized among other maintenance tasks [9], it is nearly impossible to establish the equi-
librium between patch releases in FOSS projects and updates of versions used by proprietary
vendors (see [22] for a discussion).

(5) The security response processes for proprietary software often aim to release detailed infor-
mation about a vulnerability only after a patch for that vulnerability was released. The goal
is to provide customers a safety period during which they can patch their systems before a
vulnerability gets publicly known, as well as not to publish fixes that can be transformed
into zero day vulnerabilities for the previous versions of the product. This might conflict, one
the one hand, with FOSS licenses that require to contribute changes back to the community
and, on the other hand, with security response processes set up by the FOSS projects, as

3Some of these aspects are based on empirical studies that are already five to 10 years old. As in the last decade the awareness
of software security increased both in FOSS development as well as in proprietary software industry, there is the risk that
not all of the findings are still true. For example, most larger FOSS projects nowadays support the confidential reporting of
security issues as well as a responsible patch and disclosure process. Thus, for these projects the aspect (4) is less of an issue.

:4 Dashevskyi et al.

publishing a security patch in the source code form prior a public disclosure of a vulnerability
can be considered as a public disclosure [73].

These aspects are the indirect consequences of the freedoms and additional opportunities provided
by FOSS. For example, if the maintenance model of a proprietary component does not fit the needs
of the software product that consumes it, one needs to negotiate a custom support contract or
search for alternative offerings. FOSS components provide at least two additional opportunities:
(1) Besides the FOSS vendors, there are other companies that can offer commercial support and

bug fixes for a component. Thus, one has the choice between different maintenance offerings
for the same component.

(2) As the source code is available and modifications, under certain conditions, are allowed, one
can fix issues independently from the FOSS vendors.

Unfortunately, these opportunities also lead to certain risks (as indicated in points (3) and (4)
above). From now on we call companies that integrate FOSS components into their products as
FOSS adopters (or simply, adopters).

3 THEORY BUILDING FROM A CASE STUDY AT A LARGE INTERNATIONAL
SOFTWARE VENDOR

To identify the right factors to consider when evaluating the impact of FOSS selection choices on
the security maintenance effort we conducted an exploratory case study at a large international
software vendor. In our study we adopted several elements of the Grounded Theory approach
initially proposed by Glaser and Strauss [33]. The goal of this approach is to construct a theory
based on a phenomenon that can be explained with data [36]. The approach follows the principle of
emergence [35]: the data gain their relevance within the analysis through the systematic generation
and interactive conceptualization of codes, concepts and categories. Data that are similar in nature
are grouped together under the same conceptual heading (category). Categories are developed in
terms of their properties and dimensions and finally they provide the structure of the theory [85].
We followed Yin [94] as a guidance on conducting case studies for performing our study. Our

main goal was to explore the following questions:
(1) What is the actual secure software development process of an industrial company, how is it

managed, and what is the place of FOSS components within this process?
(2) How are FOSS components selected for consumption, and which are the roles and activities

involved in the choice and integration of FOSS components?
(3) How is security maintenance of FOSS components managed, and what is its relative importance

for the software supply chain of our industrial partner?
A total of 15 months was spent by one of the authors at the premises of our industrial partner,

including 12 months at the Research Lab, and 3 months with the central Product Security Team at
headquarters. During the visit at headquarters, the authors worked closely with a senior member
of the central Product Security Team, who had been already working in that position for 8 years.
Various techniques exist for knowledge elicitation [41], and structured and semi-structured

interviews are considered to be among the most important sources of information [94]. We used
purposive sampling [37] while performing informal discussions with developers, members of the
Security Testing Team, security champions of theMaintenance Teams for two different product areas,
and experts in the Product Security Team being responsible for the definition and implementation
of the Security Development Process (i. e., the owner of the Secure Software Development Process),
and both the in-bound (adopting FOSS) and out-bound (releasing software as FOSS) Open-Source
processes (i. e., the owner of these processes). We had two dedicated meetings with the owner of
the Open-Source processes and one meeting with the owner of the Secure Software Development
Process. Moreover, we organized five meetings with two different development and maintenance

On the Effort for Security Maintenance of FOSS (WEIS’18) :5

experts. Additionally, we organized both an internal development meeting, at which we did more
than 50 short interviews of three to five minutes. However, we could not hold formally recorded
interviews, as they would require an extremely heavy and lengthy authorization process through
the legal department.

Finally, we presented our findings during the weekly team meetings of the Security Testing Team.
The senior member of the Product Security Team, being the “key informant” in Yin’s terminol-
ogy [94], suggested the participants of these meetings, and provided the necessary introductions
and background details to the participants. The set of participants consisted of interested software
developers, security experts, and security researchers, employed by our industrial partner. During
that time period, we also had an opportunity to present parts of this work to a much broader
audience of software developers at the yearly development kick-off meeting, organized by our
industrial partner internally. During this meeting, we had in-depth discussions with software
developers who confirmed our understanding of the FOSS integration and maintenance problems
of our industrial partner, and allowed us to define our further steps.

3.1 FOSS Adoption as Part of the Secure Software Development Lifecycle
Our industrial partner followed a security development lifecycle (SDL) as a part of its secure
software development process. The SDL of our industrial partner is very similar to the well-known
SDL of Microsoft [44].
The secure consumption of FOSS components requires attention in all its phases. However,

applying standard secure development procedures to all FOSS components (for instance, performing
static code analysis) requires solid understanding of the source code, the architecture, and the use
case of each FOSS component – which may be costly for a large number of FOSS components
(see [19] for further details on applying static analysis in the industry). Therefore, our industrial
partner is exploring risk-based security assessment approach as a part of the secure development
activities (see [12] for example), which motivated the work carried out in this paper. The risk-based
approach would, for instance, favor the search for the factors that help to estimate the security risk
and the maintenance effort associated with the consumption of particular FOSS components, that
are easier to obtain and to assess.

To understand the role of FOSS components in the development process of our industrial partner,
we collected data for 152 most popular FOSS projects that were requested by developers of internal
projects as components during the last five years4. We learned that the number of FOSS components
per product may vary: for example, while traditional ERP systems written in proprietary languages
(e. g., ABAP or PeopleCode) usually do not contain many FOSS components, the situation is quite
the opposite for recent cloud offerings, such as the ones based on OpenStack5 or Cloud Foundry6.

As we can see from Figure 1, FOSS components are integrated (or are requested for integration)
into a large number of projects of our industrial partner. Figure 2a illustrates the cumulative size of
the code bases of the components in the sample broken down by different programming languages
in which they were implemented: the distribution suggests that the largest code base corresponds
to Java. Figure 2b shows the distributions of the number of internal projects into which a FOSS
component from the sample was integrated (or is requested for integration), divided by Java and
non-Java components: these distributions also suggest the prevalence of Java-based components
in comparison to non-Java components. To verify this difference, we applied non-parametric
4This information is publicly available and can be reconstructed from the bill of materials of individual projects found on
the web community of the large international vendor (although, it was significantly easier to collect this information using
the internal sources).
5https://www.openstack.org/
6https://www.cloudfoundry.org/

https://www.openstack.org/
https://www.cloudfoundry.org/

:6 Dashevskyi et al.

Wilcoxon test, since the data that we collected is not normally distributed (Shapiro-Wilk test
returned p < 0.05), and it contains unpaired samples. The results of Wilcoxon test confirmed that
Java-based components are indeed preferred more by the developers of our industrial partner in
comparison to the others: the two distributions have small-to-medium and statistically significant
difference (p < 0.05, Cohen’s d = 0.44).

Fig. 1. Descriptive statistics of FOSS components used by internal projects
The two figures characterize the sample of the most popular 152 FOSS projects integrated (or requested for integration) into
different internal projects of our industrial partner: the figure on the left illustrates the sample in terms of the size of the code
base implemented in a specific programming language, while the figure on the right illustrates the distribution of the number of
integrations/requests of Java FOSS components.

Java (40%)

C++ (30%)

PHP (13%)

C (10%)

JavaScript (5%)

Other (2%)

(a) The distribution of the source code in used components
by programming languages

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

#
In

te
rn

a
l p

ro
je

ct
s

Java non−Java

(b) The number of internal projects us-
ing a component

Table 1. Popular Java projects used by our industrial partner

Our communications with our industrial partner allowed us to identify several Java projects that were among the most
interesting and challenging ones when they are integrated as components.

Project
Total

commits
Age

(years)

Avg.
commits
(per year)

Total
contributors

Current
size

(KLoC)

Total
CVEs

Apache Tomcat
(v6-9)

15730 10.0 1784 30 883 65

Apache ActiveMQ 9264 10.3 896 96 1151 15

Apache Camel 22815 9.0 2551 398 959 7

Apache Cxf 11965 8.0 1500 107 657 16

Spring Framework 12558 7.6 1646 416 997 8

Jenkins 23531 7.4 2493 1665 505 56

Apache Derby 7940 10.7 742 36 689 4

Table 1 describes several popular (both externally and internally) Java projects that we are allowed
to directly disclose. Our communications with developers of our industrial partner suggested that

On the Effort for Security Maintenance of FOSS (WEIS’18) :7

these projects are among the most interesting and challenging ones that are to be integrated (or were
already integrated) as components. For each of these projects, the table lists various characteristics
that describe its popularity and size, as well as the number of historical vulnerabilities that affect
different versions of Java sources.

3.2 FOSS Components Approval Processes
To address the second question that concerns the processes for selection of FOSS components, we
identified how this selection is managed, and which are the critical roles and activities connected
which the selection process.

Our industrial partner has formal processes in place for integration of third-party FOSS compo-
nents into its products (inbound approval), as well as for releasing their own software products as
FOSS, and contributing to already existing FOSS projects (outbound approval). These processes are
similar to the inbound and outbound approval processes described by Goldman and Gabriel [34,
Chapter 7]: they also start with legal and business case checks, as well as identification and assess-
ment of various risks. These risks may include potential intellectual property infringement, possible
lack of support from FOSS communities, and the quality of the source code and the corresponding
documentation that is intended as a contribution to FOSS communities. Additionally, our industrial
partner has implemented checks for potential security risks for both processes.
Typically, both inbound and outbound approval processes require expert knowledge, therefore

for different phases of these processes different experts may be involved: for instance, the security
checks are mostly carried out by the Central Security Team, while various license and legal checks
are performed by the legal department. However, all phases of both inbound and outbound processes
may be carried out by the same experts (or teams of experts), as there is no strict requirement that
they should be separated.
While, with respect to the inbound FOSS approval process, security checks are an important

ingredient, they are not the main decision point. First, certain FOSS components may be the de-facto
standard (e. g., Apache Hadoop7 for big data), so that the end customers of our industrial partner
may expect them to be used. Second, FOSS components may offer functionalities that are very
expensive to re-implement, so FOSS it is the most economical choice [52], and there might be only
one FOSS component with the desired functionality to choose from. Finally, a component that is
better in terms of security in comparison to the similar ones, may not fit because of a restrictive
license.

3.3 FOSS Maintenance And Response
After we identified how the choice of FOSS components is carried out, our next task was to
understand the relative importance of the security maintenance of chosen FOSS components, as
well as how the maintenance is managed.

The maintenance activities have a significant economic impact that is often not perceived by the
“lay users” as they are used to the “monthly upgrade” process of web browsers and their plug-ins.
Large-scale enterprise software, such as enterprise resource planing (ERP) systems, or industrial
control systems are the back-bone of the businesses and, thus, enterprise software customers are
often rather conservative in upgrading (or replacing) their on-premise software solutions.
Figure 2 shows the distribution of customers, as of 2014, of a large on-premise proprietary

product: the y-axis shows the number of customers (systems) and the x-axis shows the year in
which the software was released: most customers are using systems that are between eleven
and nine years old. To meet the demands of the customers, the manufacturer offers support and

7https://hadoop.apache.org/

https://hadoop.apache.org/

:8 Dashevskyi et al.

0

20, 000

40, 000

60, 000

80, 000

100 ,000

120 ,000

1998 2004 2012

No. of Systems

No. of Customers

Fig. 2. Customer distribution of an enterprise software system (as of 2014)
The distribution (as of 2014) shows #systems (blue) and #customers (red) using different versions of an ERP application: values
on the x-axis show the year when a particular version was released, and values on the y-axis are the numbers of releases and
customers of a particular version (the actual values on the y-axis are omitted for confidentiality). In 2014, most customers used
versions (and corresponding FOSS components) that were between 9 and 11 years old.

maintenance, for selected products, mainstream support for a number of years and, additional,
customer-specific extended maintenance for several additional years. Thus, all third-party products
need to be supported at least with security fixed for the same amount of time.

As customers expect support and maintenance for the complete software solution, our industrial
partner must also ensure maintenance for all integrated third-party components. This includes
security fixes for all such components that require to upgrade or modify the product (resulting in a
security upgrade or a patch that fixes, e. g., Heartbleed8 or POODLE9), but also issuing articles and
security notes that inform customers about fixing security issues in the environment their system
is operated on (e. g., recommending upgrades of a Linux distribution that customers might use to
operate the system).

For pure cloud offerings (e. g., software-as-a-service), the situation is the opposite: cloud offerings
usually have rapid release-cycle and, thus, do not require a long maintenance phase. Here, it is
more important that the consumed third party component can be upgraded easily.
As integrated FOSS components may be heavily modified or merged into the code base of the

in-house software products (or integrated prior to the existence of a software inventory), there
exists a problem of identifying the FOSS components that are used across the software portfolio.
For instance, the study by Davies et al. [29] discusses the importance of identification of open
source Java components, as well as proposes effective heuristics to identify them.
To mitigate this problem, our industrial partner has a FOSS component inventory, which was

created using Black Duck Code Center.10 We learned that developers of our industrial partner use the
high-level information provided by this solution and similar sources to learn about characteristics
of FOSS components and make decisions about them. This information is easily available (at least
internally), and contains data such as the age of a FOSS project, the information about its historical
vulnerabilities (mostly taken from the NVD), and various cumulative data that can be extracted (not
without an effort) from the source code repositories of these projects: the current size of their code
bases, the number of contributors, commits, and similar. We as well used this software inventory
to extract the data on the most popular FOSS projects that we discussed in Section 3.1.

The number of FOSS components per product depends on the actual product. For example, while
traditional ERP systems written in proprietary languages (e. g. ABAP or PeopleCode) usually do

8http://heartbleed.com/
9https://www.oracle.com/technetwork/topics/security/poodlecve-2014-3566-2339408.html
10http://www.blackducksoftware.com

http://heartbleed.com/
https://www.oracle.com/technetwork/topics/security/poodlecve-2014-3566-2339408.html
http://www.blackducksoftware.com

On the Effort for Security Maintenance of FOSS (WEIS’18) :9

Table 2. Historical vulnerabilities of 152 FOSS components

The table shows the distribution of historical vulnerability types in the sample of the most popular FOSS projects used or requested
by our industrial partner. The distribution suggests that denial of service was the most prevalent vulnerability – the absence of
such vulnerabilities is critical for business software solutions.

Vulnerability type Portion Vulnerability type Portion

Denial of Service 30.8% Gain Privileges 3.1%
Code execution 20.3% Directory Traversal 2.4%
Overflow 16.6% Memory Corruption 2.2%
Bypass Something 10.3% CSRF 0.9%
Gain Information 7.1% HTTP response splitting 0.3%
Cross-Site Scripting 5.9% SQL injection 0.1%

not contain a lot of FOSS components, the situation is quite the opposite for recent cloud offerings
based on OpenStack or Cloud Foundry (moreover, both OpenStack and Cloud Foundry themselves
consume already several hundreds of FLOSS components).

Table 2 summarizes the vulnerability types reported for these FOSS components in the National
Vulnerability Database (NVD). This distribution suggests that the most prevalent historical vul-
nerability type is denial of service – the absence of such vulnerabilities is critical for business
software solutions that must be constantly available online. Also, vulnerabilities of this type may be
particularly hard to identify with conventional static analysis [24]. Given the numbers of internal
projects that use and request FOSS components, the problem of their security maintenance becomes
of great importance.
In summary, to minimize the effort associated with integrating FOSS components as well as to

maximize the usability of the developed product, the development teams consider different factors.
Below we list our findings on the factors that they consider from the security maintenance effort
perspective:

F1 The community around a component is active. Components from active and well-known
FOSS communities (e. g., Apache Software Foundation11) should attract more volunteer
developers [1]. This in turn should enable the development teams of proprietary vendors
that integrate FOSS components to leverage external expertise, as well as externally provided
security fixes.

F2 A component is widely used by many products. The components that have been already
used should require lower effort as licensing checks are already done, and the internal
technical expertise can be tapped as well, so that the effect of the economies of scale may be
achieved [13]. Thus, the effort for fixing issues or integrating new versions of a component
can be shared across multiple development teams.

F3 Technical aspects of a component are familiar to developers. If various technicalities, such as
programming languages and build systems used in certain FOSS components are already
familiar to the development teams, a lower effort for integration and support for those
components can be expected [13, 14, 23].

F4 A component is “covered” by plannedmaintenance from its own developers or third-parties. If the
security maintenance provided by the FOSS community “outlives” the planned maintenance
lifecycle of the consuming proprietary product, only the integration of minor releases into
proprietary releases would be necessary [21].

F5 Proxies for estimating the maintenance effort. Unfortunately, it is very difficult to measure the
working hours of developers that represent the software maintenance effort directly [45, 95].

11https://www.apache.org/

https://www.apache.org/

:10 Dashevskyi et al.

Thus, software managers, stakeholders, and developers may employ various proxies which
have also been studied in the literature [6, 74, 87, 95] instead of the missing measures of direct
maintenance effort. Further, a team of software developers is normally assigned to several
tasks, security maintenance being only one of them, so it is hard to get analytical accounting
for security maintenance to the level of individual vulnerabilities [67]. Further, when a FOSS
component is shared across different consuming applications, each development team can
differ significantly in the choice of the solution and hence in the effort to implement it.

Additional elements, such as the compatibility of the license, or requests from customers that
need integration with their code base also play a role. We do not consider them in this paper, as
our focus is security maintenance as opposed to software component selection or production. For
further discussion see [88] on alliances for software production, or [75] on legal issues and licensing
models.

4 THEORY CONSOLIDATION FROM RESEARCH
We now consolidate the theory by a critical overview of the relevant relevant research about
selection, evaluation, and consumption of third-party FOSS components by FOSS adopters.

4.1 Selection and Evaluation of FOSS
The first consistent observation is that FOSS components are often selected based on the previous
experience of developers, even without considering other alternatives, as emerged from interviews
within several FOSS adopters [11]. Whilst some aspects of this experience are clearly idiosyncratic to
both firms and developers and may be hard to measure, the previous knowledge of the programming
language used for the FOSS component is expected to be a driver as it simplify the developers’ own
integration effort [13, 14]. Hence the popularity of the programming language might be an indicator
of the likelihood that the developer might have actually experienced it beforehand [76, 96].

While past experiences of developers may influence the selection of FOSS certain components, the
final decision about the integration of a specific component is typically done after the component
is evaluated against the firm-specific criteria [59]. This process may differ from case to case even
within the same software company [84].

However, a common ground has been identified in the supplied functionality which played the
major role among a set of factors that include various licensing aspects, the speed of evolution,
the community characteristics (including the availability of support), as well as the quality of
documentation [3, 7, 10]. Such identification relied also on a survey based on software developers
that reuse open source software components [11].
Several open source software selection models [77, 93] considered software security aspects,

however, only to the limited extent (for example, the model by Samoladas et al [77] considered only
the presence of “null dereferences” and “undefined values” in the source code).

Unfortunately, there is no common agreement on which characteristics of FOSS projects should
be considered by FOSS adopters when selecting a component (especially with respect to software
security). This is possibly because the information about these factors may be very heterogeneous,
limited, or even absent [11]: ben Othmane et al. [67] concluded that FOSS adopters’ developers may
be aware of various factors that may impact the security maintenance effort, however they often fail
to identify them. Also, themajority of FOSS projects may provide insufficient documentation [59, 84],
furthermore, there may be a lack of support from the FOSS developers [84]. This complicates the
industrial FOSS adoption by interfering with the FOSS adopters’ ability to learn how to use and fix
a component. As developers often lack time for performing a thorough evaluation of all third-party
components [84], this may cause additional security problems in the future.

On the Effort for Security Maintenance of FOSS (WEIS’18) :11

4.2 The Economic Impact of Security Maintenance
The maintenance of software components from the security economics perspective is relatively
unexplored. In contrast, the cost of general software maintenance is well investigated in the
literature [14, 15, 21, 23].

Conceptually, there is an important distinction between parties that are using software compo-
nents (FOSS adopters) and parties that provide software components and support them (providers).
For instance, the security patch management model by Cavusoglu et al. [22] specifies the costs
of providers due to developing and shipping patches, as well as vulnerabilities that are exploited
before patches are released (reputation losses). The costs of FOSS adopters [22, 86] may emerge
due to potential security damage (unavailability of a patch or inability to apply it) and updates
induced by components (testing and installing patches). This implies different types of costs for
different parties, however, for our scenario, a FOSS adopter would have to bear all these costs, as
the adopter is providing to its customers the software that includes FOSS components.

More specifically, the costs of FOSS adopters are affected by the security maintenance effort that
they must invest into FOSS components. There are many reasons why security patches provided by
FOSS communities cannot be applied effortlessly by industrial FOSS adopters: for instance, due to
large numbers of vulnerabilities being disclosed periodically12, or the fact that third-party security
patches should be additionally verified, or due to the reason that patches must be applied for all
supported versions of a proprietary application that relies on a potentially unsupported version of
a vulnerable FOSS component. Therefore, the security maintenance effort increases significantly
when FOSS adopters must identify (or develop), test, distribute, and deploy security patches for
FOSS components to their end customers [13, 15, 22].

Several studies [13, 14, 23, 31] observed that a significant part of maintenance costs is generated
when the FOSS adopter developers must understand how the software from various third-party
providers should be modified or patched. Therefore, an additional reason for high security mainte-
nance costs and efforts may be the fact that proprietary FOSS adopters may integrate hundreds of
FOSS components into their products.
Banker and Slaughter [15] investigated how software maintenance in organizations can be

improved in order to achieve economical benefits – they find support for a hypothesis that software
maintenance can be characterized by economies of scale. Therefore, to the larger is the number of
FOSS components used by proprietary applications, and the larger is the number of vulnerabilities
that “interfere” with regular maintenance activities, the more the effort due to security maintenance
activities may affect the operational costs of FOSS adopters.

Therefore, to account for a possible effect of the economies of scale, we consider three different
models that represent different ways of managing security maintenance of FOSS components (see
Section 5.2). Specifically, we intend to consider situations in which FOSS adopters could have a
centralized team of FOSS security experts that mitigates the negative effect of the lack of knowledge
about the entire portfolio of FOSS components integrated into the vendors’ products. In these two
models, the “bulk” security issue resolution may be beneficial when the number of usages of a
component is high.

4.3 Factors of FOSS projects and Security Maintenance Effort
In the rest of this Section we overview various characteristics of FOSS projects that have been
discussed in the past literature as being directly or indirectly relevant to the security maintenance
of software.

12The study by Rescorla [73] suggests that vulnerability discovery/fix rates for software projects do not decrease through
their lifetimes.

:12 Dashevskyi et al.

4.3.1 FOSS Community. Several studies considered the popularity of FOSS projects as being
relevant to their quality and maintenance [72, 76, 96]. It is a folk knowledge that “Given enough
eyeballs, all bugs are shallow” [72], meaning that FOSS projects have the unique opportunity to be
tested and scrutinized not only by their developers, but also by their user community. However,
the user community of any FOSS component can be divided into active users (adopters) that learn,
integrate, contribute to, or modify a component for their own needs; and passive users that only
download a component and install it.

The number of adopters should positively impact the number of proprietary products into which
a component will be integrated (as suggested by developer experience from [11]). Also, the number
of adopters should positively impact the number of vulnerabilities as active users are more likely to
modify and inspect the source code, finding and reporting them. The number of downloads (passive
users) of a component can serve as another measure for popularity [27] as identified by the less
active subset of users that only download and install a component and are less likely to inspect
the source code. Therefore, while the impact of this factor on vulnerability reporting (and on the
security maintenance) should still be positive, it should be smaller than the number of adopters.
Apart from external popularity measures, there are internal ones, such as the number of devel-

opers of a FOSS component. This measure may serve as an independent factor that impacts the
number of bugs or vulnerabilities in a component [17]. However, for our scenario, the impact may
be either negative (more experienced developers – less bugs and vulnerabilities), or negative (more
inexperienced developers or occasional contributors – more bugs and vulnerabilities).
Understanding how software works is a necessary prerequisite for successful software mainte-

nance and development [14, 15, 31] – this is also supported by our finding F3. Ostrand et al. [66]
observed that in multi-language projects the files that are implemented in certain programming lan-
guages may contain more bugs than the others. While the authors [66] did not suggest that certain
languages may be more prone to bugs or vulnerabilities, they stress the importance of considering
various programming languages in connection to their number. Also, the increasing familiarity
of users with particular programming languages or frameworks may increase the likelihood that
malicious users will able to “break” a piece of software that relies on that particular programming
language or framework [5].

Based on the discussion of the above literature, as well as our findings F1, F2, and F3, we formulate
the following hypothesis:

H1 The factors that characterize various popularity aspects of a FOSS component have positive
impact on the security maintenance effort of that component.

4.3.2 Factors that Impact Vulnerabilities. As we have discussed above, various approaches
and recommendations for selection of FOSS components (that may be mostly performed by the
management) may not consider many of the factors that are directly relevant to software security
(that are important for security experts). As software developers and engineers are focusing on the
quality and security of individual software components, the major research efforts had been focused
so far on predicting bugs and vulnerabilities in software (see [55]). Although our focus is specifically
on security vulnerabilities that may stand aside from generic software bugs, Ozment [68] showed
that methods for estimating trends in generic bugs used in software engineering literature can be
also applied for security vulnerabilities.

Specifically, an extensive body of research explored the applicability of various metrics that can be
used for estimating the number of bugs and security vulnerabilities in future releases of a software
component. The simplest such metric is time since initial release (i.e., the age of a component), and
the corresponding model is a Vulnerability Discovery Model. Massacci and Nguyen [55] provide

On the Effort for Security Maintenance of FOSS (WEIS’18) :13

a comprehensive survey and independent empirical validation of several vulnerability discovery
models.
The age of a project, its size and the number of code changes are traditionally used in various

studies that investigate defects and vulnerabilities in software [32, 50], software evolution [16, 20]
and maintenance [96].

For example, the study by Koru et al. [50] demonstrated a positive relationship between the size
of a code base of a project and its defect- proneness. Zhang [97] evaluated the LoC metric for the
software defect prediction and concluded that larger modules tend to have more defects. Many
other works (see [32, 49, 63, 81, 96, 99]) suggest a positive relation between the number and the
frequency of changes in the source code (e.g., repository commits, added/deleted lines of code),
and the number of software defects and vulnerabilities.

The works by Ostrand et al. [66] and Bell et al. [17] aimed on predicting files in new releases of
software projects that may have the largest concentration of bugs, so that they can be prioritized
for testing. The work by Ostrand et al. [66] considered bug modification histories of files in
previous releases, while the follow-up study by Bell et al. [17] used the information about individual
developers: the authors of both studies had access to the industrial systems of the same vendor that
they used for evaluating their work. The authors of [17] find evidence that prediction capabilities of
the previous model by Ostrand et al. [66] improves when adding the number of unique developers
of a system as an additional factor.
Shin et al. [81] analyzed several developer activity metrics showing that poor developer col-

laboration can potentially lead to vulnerabilities, and that code complexity metrics alone are not
sufficient for vulnerability prediction. Similarly to [63], the authors of [81] suggest that code churn
metrics are better indicators for approximate locations of vulnerabilities than complexity.

Several other metrics have been used: static analysis defect densities [90], frequencies of occur-
rence of specific programming constructs [78, 91], etc. We illustrate some representative cases with
Table 3.

While most of the above approaches and models can be efficiently used for reasoning about
several projects, it is unclear whether they can be applied in a scenario where there are hundreds
of FOSS components integrated into various products of a FOSS adopter. Therefore, we formulate
the following hypothesis:

H2 The factors that can be used as predictors for bugs and vulnerabilities in individual components
can be also used for assessing the potential security maintenance impact within a large third-
party component portfolio.

4.3.3 Secure Development, Testing, Maintenance And Contribution. Wheeler [92] suggested that
successful FOSS projects should use static analysis security testing (SAST) tools, which should at
least reduce the amount of trivial vulnerabilities [25] (see [26] for the examples of such vulnerabili-
ties). Penetration testing and dynamic analysis security testing (DAST) tools facilitate the early
discovery of security vulnerabilities [8], while maintaining the security regression tests for past
vulnerabilities, and tests for the security-critical functionality ensures that the same (or similar)
security issues are not re- introduced, thus lowering the security maintenance effort.
Secure design specifications of software components help the adopters to build more secure

products – the availability of documentation relevant to security aspects and considerations helps
to eliminate the security defects at the early stage of product development [57]. Additionally, the
practice of internal reviews when the source code commits are checked before the code is pushed
into production improves the overall quality and the security of the product [58]. Finally, the
presence of the secure coding standards as a taxonomy of common programming errors [47, 80]
reduces the amount of future vulnerabilities and the efforts for security maintenance.

:14 Dashevskyi et al.

Table 3. Vulnerability and bug prediction approaches

We provide a brief overview of various approaches for bug and vulnerability prediction in the existing literature (we refer to [38]
and [71] for a more complete discussion).

Paper Predictors Bug data Predicted vars

[66] Bug and change histories of files Internal data on previous releases of a com-
mercial system

Files with largest bug
concentration

[63] Relative Code churn Internal defect dataset (Windows Server
2003)

Bug density

[82] Complexity metrics MFSA, NVD, Bugzilla Vulnerable functions

[65] Member and Component dependency
graphs, Complexity metrics

MFSA, NVD Vulnerable functions

[81] Complexity metrics, Code churn, Devel-
oper activity

MFSA, Red Hat Linux package manager Vulnerable files

[90] Static analysis vulnerability density NVD Num. of Vulnerabilities

[17] Developer activity metrics Internal data on previous releases of a com-
mercial system

Files with largest bug
concentration

[55] Known vulnerabilities MFSA, NVD, Bugzilla, Microsoft Security
Bulletin, Apple Knowledge Base, Chrome
Issue Tracker

Num. of Vulnerabilities

[78] Frequencies of prog. constructs SAST warnings (Fortify SCA) Vulnerable files

[91] Complexity metrics, Frequencies of
prog. constructs

NVD, Security notes from a project Vulnerable files

There are several security related-factors that may not impact the security maintenance effort
significantly, but have a direct effect on the reputation a FOSS component, making it more or less
appealing for selection by adopters. For instance, a project that provides means for downloading its
source and binary packages securely (e.g., via https, cryptographically signed or hashed) protects
its users from the malware that malicious third parties could inject into downloads. Additionally, if
the private vulnerability reporting process is used by FOSS developers, it allows FOSS adopters to
resolve security issues in components in a timely manner and notify their customers before the
vulnerability becomes publicly known.

Our finding F4 suggests that the presence of the planned maintenance and support lifecycles in
FOSS projects can be also an important factor that influences the adopters’ choice of components:
this factor enables FOSS adopters to plan ahead when they should make a decision on whether
to replace a component when its maintenance becomes too complicated, or to fork a component
and provide support internally when there is no adequate replacement available. The ease of
contribution to a FOSS project (such as clear guidelines for new developers and transparent
contribution processes) may help to reduce the maintenance effort when a project needs to be
forked by adopters. The same is also true for FOSS projects which provide a clear development
and distribution models: if these models do not match the models and processes typically used by
FOSS adopters, this may disturb their software maintenance processes, significantly increasing the
associated efforts and costs.

Based on the above discussion, as well as our finding F4, we formulate the following hypothesis:
H3 The factors that characterize various aspects of security and development lifecycle within FOSS

components have negative impact on the security maintenance effort of that component.

On the Effort for Security Maintenance of FOSS (WEIS’18) :15

5 A MODEL OF BUSINESS AND TECHNICAL DRIVERS FOR FOSS SECURITY
MAINTENANCE

The case study described earlier (Section 3), as well as the analysis of existing literature (Section 4),
helped us to delineate the key features that a theoretical model for capturing the effort of software
maintenance should have to extend to security.

5.1 A Conceptual Model of Business And Technical Drivers
We identified four main areas of factors that may have direct or indirect impact on the security
maintenance effort:
(1) FOSS community: includes both quantitative and qualitative factors that reflect characteristics

of a FOSS project community, being a function of project’s general popularity and appeal to
contributors. This area also affects the chances that a project will be selected as a component
by external developers. Some of the factors from the previous category and the present one
may belong to both areas at the same time (e. g., popularity of used technologies, such as the
programming language used for implementation), therefore we group them into the sub-area
that represents the ease of analysis for security researchers.

(2) Secure development and testing: factors that characterize how well secure development and
testing activities are built into the lifecycle of a FOSS project, influencing all potential
challenges of consumers with respect to software security, including vulnerabilities.

(3) Maintenance and contribution models: factors that identify the response, maintenance and
support processes within a FOSS project. This particular area represents the appeal of a FOSS
project for potential consumers with respect to the maintainability and support in general,
as well as the availability of security-related information about the project.

(4) Proxy for code complexity: this area of factors comprises of various quantitative characteristics
of FOSS projects that represent their overall complexity. This complexity may have an impact
on the number of disclosed vulnerabilities, thus affecting the maintenance effort of resolving
them.

Tables 4, 6 and 5 summarize each factor for every area, as well as specify the data collection
method that can be used to extract the information on these factors (see Section 6 for the description
of data collection process). Figure 3 shows the relationships between these factors and the security
maintenance effort.

Table 4. FOSS community drivers

Factor Source Collection
method

Description References

Popular
programming

language
Project website, Open
Hub, code repository

Automatic Project is mostly written in Java, C,
C++, PHP, JavaScript, SQL, etc.

[56, 67]

NumDevs Project website, Open
Hub, code repository

Automatic The number of developers. [63, 81, 96]

AdopterCount Project website, Open
Hub

Automatic The number of adopters (active
users) of a project taken from Open
Hub.

[1, 70, 72, 76, 93, 96]

DownloadCount Project website, CII Cen-
sus

Semi-
automatic

The number of downloads of
project releases or packages.

[27]

We left out a key metric that has been used in several papers [81, 99] – the number of different
developers that make a number of changes to different areas of the source code of a single project.
While this variable is a good predictor for vulnerabilities in individual units of which a single

:16 Dashevskyi et al.

YearsLinesChanged

CountLineCode

NumCommits

Proxy for
code complexity

Ease of analysis
for security researchers FOSS community

Popular
programming

language

DownloadCount

AdopterCount

NumDevs

Chances of a vuln.
to be reported

Organizational
characteristics of

FOSS

Security
Maintenance

Effort

Maintenance and
contribution models

Checked
commits

Coding
standards

Static/dynamic
code analysis

tools

Ease of
contribution

Maintenance and
support

Secure development
and testing

Secure
design

specification

Security tests

Penetration
testing

Private
vuln.

reporting

List of
known
vulns.

Secure
downloads of

releases

Both security-related features (blue ovals), and business-related/functional features (green rectangles) can potentially impact the
security maintenance effort, as it may be the case that the main driver for a choice of a FOSS component is not a security feature.

Fig. 3. Theoretical model for the impact of various factors on security maintenance

project or component is built (e.g., files or library modules), it cannot be used in our study, as we
consider a FOSS component to be a single “unit”. Therefore, we consider the number of unique
developers that modify different FOSS components. For the same reason we only use the cumulative
number of changes to a FOSS component instead of the number of changes within its specific units.

Table 5. Proxy for code complexity drivers

Factor Source Collection
method

Description References

CountLineCode Open Hub, code reposi-
tory

Automatic Total size of the code base (LoC) [13, 16, 20, 32, 50, 67, 97]

LinesChanged Open Hub, code reposi-
tory

Automatic The development activity of a
project (added/deleted lines of
code)

[32, 49, 63, 81, 95, 96, 99]

NumCommits Open Hub, code reposi-
tory

Automatic Number of total commits [63, 81, 96]

Years Open Hub, code reposi-
tory

Automatic Age of a project in years. [7, 49, 69, 96]

Table 7 shows the final set of independent variables that we collected, and used for the analysis:
along with the description of each variable, we provide a rationale for including it into the models,
as well as connect it to a corresponding hypothesis that we have formulated in Section 4.

On the Effort for Security Maintenance of FOSS (WEIS’18) :17

Table 6. Secure development and testing, maintenance and contribution model drivers

Factor Source Collection
method

Description References

Security tests Project website, code
repository

Manual The test suite contains tests for past vul-
nerabilities (regression) or security func-
tionality tests.

[1, 13, 26, 92, 93]

Private vuln.
reporting Project website Manual There is a possibility to report security

issues privately.
[61]

SAST/DAST
tools Project website, code

repository, Coverity
website

Manual A project is using code analysis tools
during development.

[1, 25, 67, 92, 93]

Secure
design specs Project website, docu-

mentation
Manual The secure design specification of the

project is documented.
[57, 67]

Penetration
testing Project website, docu-

mentation
Manual The penetration testing is performed

regularly by the project developers.
[8]

Coding
standards Project website, doc-

umentation, code
repository

Manual Secure coding standards are docu-
mented.

[13, 47, 67, 80]

List of
known vulns Project website, vulnera-

bility databases
Manual Past security vulnerabilities of the

project are documented and are publicly
available.

[93]

Maintenance and
support

Project website, docu-
mentation

Manual The patch and release cycles are docu-
mented. The maintenance roadmap and
support cycles for different versions of a
project are documented.

[92, 98]

Ease of
contribution Project website, doc-

umentation, code
repository

Manual Clear guidelines for new developers or
potential contributors are present.

[1]

Checked
commits Project website, docu-

mentation, core reposi-
tory

Manual There exists a review process for new
contributions, including security code
reviews.

[1, 58, 72, 93]

5.2 The Effort Variable For FOSS Maintenance
At first, we observe that a systematic review of software development cost estimation studies [48]
have highlighted that “main cost driver in software development projects is typically the effort and we,
in line with the majority of other researchers in this field, use the terms cost and effort interchangeably”.
This is further confirmed by recent empirical studies which used the dataset of International
Software Benchmark Standards Group [45]. Empirical studies on software maintenance have
confirmed the same relation between the cost and the effort [13].
Many studies (see for example [13] and [45]) employed the number of Function Points [4] as

a measure of the design and analysis activities of software developers, which is one of the main
factors that impacts the software maintenance effort [13]. Several empirical studies [51, 64] on
historical vulnerabilities report that typical security fixes are small and local in terms of modified
source lines of code (SLOC) and the number of affected functions (Function Points). Since Albrecht
and Gaffney [4] observed that Function Points have a high degree of correlation with SLOC, it is
fair to assume that resolving a single Function Point during regular maintenance corresponds to
resolving a single security vulnerability during security maintenance.
However, as we identified in the previous section, software developers and managers of our

industrial partner are considering different proxies for the maintenance effort (F5), as it is very

:18 Dashevskyi et al.

Table 7. Variables used for analysis

Factor Description Rationale Hypothesis
AdopterCount The number of active users (from

Open Hub).
The more popular the project is, the more
likely it will be included by as a component.

H1

DebInst The number of package downloads
from the Debian repository.

This variable provides an additional measure
for popularity, however these two factors
are not exactly correlated as some software
is usually downloaded from the Web (e. g.,
Wordpress) so it is very unlikely that some-
one would install it from the Debian reposi-
tory, even if a corresponding package exists.
On the other hand, some software may be dis-
tributed only as a Debian package.

H1

NumDevs The number of unique contributors
to the source code repository of a
project.

Too many contributors might induce vulner-
abilities as they might not have exhaustive
knowledge on the project and can inciden-
tally break some features they are unaware
of.

H1

Years The age of a project (in years). More vulnerabilities could be discovered over
time. Alternatively, the agemay be the sign of
the maturity of a project.

H2

CountLineCode The number of lines of code in vari-
ous programming languages (exclud-
ing the source code comments).

The more there are lines of code, the more
there will be new vulnerabilities.

H2

LinesChangedRatio The fraction of the total number of
added and deleted lines of by the total
number of lines of code.

More historical changes might indicate that
FOSS developers are fixing vulnerabilities, so
that the adopters do not have to fix them any-
more. This variable should have negative im-
pact on the effort.

H2

PrivateVulnReporting Indicates whether a projects enforces
private vulnerability reporting.

Projects that call for responsible security vul-
nerability disclosure may be more attractive
for the adopters.

H3

ExternalSecTestng A project is tested for security by
third-party organizations.

External security testing indicates sufficient
attention to the project, signifying its impor-
tance. It may also provide benefits of addi-
tional testing.

H1 , H3

SecTools Indicates whether security testing
tools are used by FOSS developers.

The usage of security testing tools should de-
crease the number of post-release vulnerabil-
ities, impacting the security maintenance ef-
fort for the adopters.

H3

SecDesignSpec A project describes how the security
is built in, and/or provides a refer-
ence to the relevant security stan-
dards, and/or provides secure coding
guidelines.

These means may help to improve the secu-
rity of a project in general, impacting security
maintenance for both in-house FOSS develop-
ers as well as for the adopters.

H3

VulnList A project publishes and maintains a
list of its known vulnerabilities.

This variable indicates that security is treated
responsibly within a project, making it more
attractive for the adopters, and potentially im-
pacting the security maintenance for them.

H1 , H3

MaintSupport A project provides details about sup-
ported versions, release and patching
processes.

This information allows the adopters to plan
their maintenance actions in advance, thus
impacting the security maintenance as well.

H2

EaseContrib A project provides clear guidelines
for potential new developers.

This factor may attract more new develop-
ers, and indirectly impact the security main-
tenance effort via the NumDevs variable.

H1

CodeStandards A project specifies coding guidelines
for its contributors.

Clear coding guidelines for project contrib-
utors may improve the overall quality of a
project, and improve the comprehensibility of
the source code for the adopters, impacting
their security maintenance efforts.

H1 , H3

CheckedCommits There exists a code review process for
the contributors.

Code reviews may improve the overall qual-
ity of a project, and facilitate security mainte-
nance efforts for the adopters. The presence
of code reviews may also give the adopters
the perception of better quality.

H1 , H3

On the Effort for Security Maintenance of FOSS (WEIS’18) :19

difficult to accurately measure working hours of developers as in Banker et al. [13]. Moreover,
it was neither impossible to measure the working hours of developers on security maintenance
alone (as this data is not separable from “functional” maintenance), nor we could measure them on
each consumed FOSS component (as this data is simply not available). Hence, we need to identify
suitable proxies.

During our exploratory case study described in Section 3, we also identified that managers and
developers perceive the number of products that are using a vulnerable FOSS component as an
important factor for the security maintenance (F2). Our further discussions with developers and
researchers of our industrial partner confirmed that instead of working hours spent by developers
on specific maintenance tasks, the combination of vulnerabilities of the FOSS component itself and
the number of company’s products using it can be a satisfactory proxy for the security maintenance
effort. At first, a large number of vulnerabilities may be the sign of either a sloppy process, or a
significant attention by hackers and may warrant a deeper analysis during the selection phase,
or a significant response during the maintenance phase13. This effort is amplified when several
development teams are asking to use the FOSS component as a vulnerability which eschewed
detection may impact several hundred products and may lead to several security patches for
different products.

Let |vulnsi | be the number of vulnerabilities that have been cumulatively fixed for the i-th FOSS
component and let |productsi | be the number of proprietary products that use the component:
(1) The Distributed model covers the case when security fixes are not centralized within a

company. For instance, most of vulnerabilities apply to one internal product, so that each
development team takes care of security issues in FOSS components that they use [67].
However, as the number of vulnerabilities and products grow over time, vulnerabilities may
affect more and more products at once, therefore the effort for security maintenance increases
linearly with the number of products using a FOSS component:

ei ∝ |vulnsi | · |productsi | (1)

(2) In the Centralized model a security fix for all instances of a FOSS component is issued
once by the security team of the company and then distributed between all products that
are using it. This may happen when, as a part of FOSS selection process, development teams
must choose only components that have been already used by other teams and are supported
by the company. Additionally, as pointed by ben Othmane et al. [67], vulnerabilities affecting
several products may be addressed by a single generic solution that applies to all of them.
Finally, Banker et al. [13] have already shown that maintenance models do not scale linearly,
and that software maintenance may be affected by economies of scale: the effort spent by
a single maintenance team that distributes fixes for all consumers within a company may
be the most economical choice. To reflect this case, we use two versions of this model:
Centralized constant and Centralized network models. In these models the effort for
security maintenance scales either logarithmically (essentially distribution effort of pushing
fixes being minimal) or quadratically with the number of products using a FOSS component

13We also considered the option of using the number of exploits from the Offensive Security database (http://www.
offensive-security.com) as an alternative metric. Numbers of vulnerabilities and exploits have a strong correlation (in
our dataset: rho = 0.71, p < 0.01) because security researchers can create exploits to test published vulnerabilities and,
alternatively, they can create exploits to test a vulnerability they have just found (for which a CVE entry does not yet exist).
We tested both values without finding significant differences and, for simplicity, we use the number of vulnerabilities as the
proxy for effort since this was considered by developers a “standardized” information available from known trusted sources,
whereas exploits would come from less neutral sources.

http://www.offensive-security.com
http://www.offensive-security.com

:20 Dashevskyi et al.

Number of products

Effort

hybrid
model

distributed
model

centralized
model

V0

initial
effort
(β0)

Fig. 4. Illustration of the three effort models

(network effect for the cost of pushing fixes). Their equations are as follows:

ei ∝ cloд(vulnsi , productsi) = |vulnsi | · log
(
|productsi |

)
(2)

ei ∝ cnet ((vulnsi , productsi)) = |vulnsi | ·
√(

|productsi |
)

(3)

(3) The Hybrid model combines the two previous models: security issues in the least consumed
FOSS components (e. g., the number of products that consume them is less than the mean
of all consumptions) are not fixed centrally. After this threshold is reached and some effort
linearly proportional to the threshold of products to be considered has been invested, the
company fixes them centrally, pushing the changes to the remaining products. For this model,
we devise two versions as Hybrid constant and Hybrid network models. Their equations
are as follows:

ei ∝

{
|vulnsi | · |productsi | if |productsi | ≤ p0

p0 · |vulnsi | + chyb x (vulnsi , productsi) otherwise forx ∈ {loд,net}
(4)

Where chybx (vulnsi , products0) = 0 to guarantee continuity at the indifference point and, as the
number of products grows productsi > products0 the cost function chyb x asymptotically scales as
cx , i.e. chybx (vulnsi , productsi) = O(cx (vulnsi , products0)).

As shown in Figure 4, the Hybridmodel is a combination of the Distributed and Centralized
models, when centralization has a steeper initial effort. The point V0 is the switching point where
the company is indifferent between the centralized and distributed effort models. The hybrid model
captures the possibility of a company to switch models after (or before) the indifference point. The
fixed effort of the centralized model is obviously higher than the one of a distributed model (e. g.,
setting up a centralized vulnerability team, establishing and communicating a fixing process, etc.).
Hence, we extend the initial function after the threshold number of products p0 is reached,

so that only a logarithmic or exponential effort is paid on the remaining products. This has the
advantage of making the effort ei continuous in |productsi |. An alternative would be to make the
effort logarithmic/exponential in the overall number of products after |productsi | > p0. This would
create a sharp drop in the effort for the security analysis of FOSS components used by several
products after p0 is reached. This phenomenon is neither justified on the field, nor by economic
theory. In the sequel, we have used for p0 the mean of the distribution of the proprietary products
that are using a FOSS component.

On the Effort for Security Maintenance of FOSS (WEIS’18) :21

6 EMPIRICAL DATA ANALYSIS
6.1 Data Collection
We considered the following public data sources to obtain the data on factors of FOSS components
that we outlined in Section 5:
(1) National Vulnerability Database (NVD) – the US government public vulnerability data-

base, we use it as the main source of public vulnerabilities (https://nvd.nist.gov/).
(2) Open Sourced Vulnerability Database (OSVDB) – an independent public vulnerability

database. We use it as the secondary source of public vulnerabilities to complement the data
we obtain from the NVD (http://osvdb.org).

(3) Black Duck Code Center – a commercial platform for the open source governance can be
used within an organization for the approval of the usage of FOSS components by identifying
legal, operational and security risks that can be caused by these components. We use vendor’s
installation to identify its most popular FOSS components.

(4) Open Hub (formerly Ohloh) – a free offering from the Black Duck that is supported by
the online community. The Open Hub retrieves data from source code repositories of FOSS
projects and maintains statistics that represent various properties of the code base of a project
(https://www.openhub.net/).

(5) Coverity Scan Service – in 2006 Coverity started the initiative of providing free static code
scans for FOSS projects, and many of the projects have registered since that time. We use this
website as one of the sources that can help to infer whether a FOSS project is using SAST
tools (https://scan.coverity.com/projects).

(6) Core Infrastructure Initiative (CII) Census – the experimental methodology for parsing
through data of open source projects to help identify projects that need some external funding
in order to improve their security. We use a part of their data to obtain information about
Debian installations (https://www.coreinfrastructure.org/programs/census-project).

(7) HackerOne – an online platform for white-hat hackers, where various companies publish
security bug bounties, including vulnerabilities in FOSS projects. We used this information
to identify whether various companies seek to perform external security testing of the FOSS
projects in our sample (https://www.hackerone.com/).

We have collected the dataset of 152 FOSS projects (projects that are consumed by at least 5
products as indicated in the Black Duck Code Center repository of our industrial partner). We have
showed some of the descriptive statistics of these projects earlier in Table 2 and Figure 1.
For each of these projects we have collected the dependent variables (discussed in Section 5.2),

as well as interval and dummy independent variables described in Tables 4, 5, and 6. During the
manual collection procedure, we have examined the data sources (4), (5), and (7) described above.
The interval independent and the dependent variables have been collected automatically, while the
dummy variables have been collected manually (see Table 7 for the final list of variables used for
the analysis). In spite of their intuitive appeal, we excluded some of the dummy variables related to
the programming languages14 from the data analysis, because we realized that almost all projects
have components of both, so these variables would not be discriminating. We also had to exclude
the variable related to the presence of security tests, as we were unable to find this information
with the above data sources. Our experience with data collection suggests that this information
could be obtained from source code repositories, however it would still require significant manual
effort, and it is unclear whether this effort will eventually pay off.

14Such as variables that indicate whether there are parts of the code base written in programming languages without a
built-in memory management, or in scripting languages that could be prone to code injection vulnerabilities [93].

https://nvd.nist.gov/
http://osvdb.org
https://www.openhub.net/
https://scan.coverity.com/projects
https://www.coreinfrastructure.org/programs/census-project
https://www.hackerone.com/

:22 Dashevskyi et al.

We also tried to find commonalities between FOSS projects in order to cluster them. However, this
process would introduce significant human bias. For example, theApache Struts 2 FOSS component is
used by the vendor as a library in several projects, but also as a development framework in few other
projects (indeed, it can be considered to be both a framework and a set of libraries). Splitting the
Apache Struts 2 data point into another two instances marked as “library” and “framework” would
introduce dependency relations between these data points. On the other hand, assigning arbitrarily
only one category to such data points would also be inappropriate. A comprehensive classification of
FOSS projects would require to perform a large number of interviews with developers to understand
the exact nature of the usage of a component and the security risk. However, it is unclear what
would be the added value to developers of this classification, as well as the time spent for the
interviews.

6.2 Demographics
Table 8 shows the descriptive statistics on the interval response variables (the security maintenance
effort that corresponds to the three models discussed in Section 5.2), as well as statistics on the
explanatory variables that we collected from the data sources discussed above. According to previous
studies [81], several of these explanatory variables are already known for having the discriminative
power with respect to software vulnerabilities.
As we are interested in assessing the factor of scale of the impact of our explanatory variables

on the security maintenance, we apply the log and square root transformations to these variables
(their distributions after this transformation are normal according to the Shapiro-Wilk test). We
added 1 to the number of adopters and downloads variables (DebInst and AdopterCount) before
transforming them with log, since some of the data points initially contained zeros for their values.
We justify this by the fact that the value of these variables should be at least 1, as we know that our
industrial partner integrates all components from the sample.
Some FOSS components from our sample did not have historical vulnerabilities at the moment

of this writing, however, it does not mean that there may be no vulnerabilities in these components
in the future. Therefore, we added 1 to the total number of vulnerabilities (Vulns) of all FOSS
components from the sample to reflect the case in which a vulnerability had just appeared in
a component: if there are no historical vulnerabilities in the component, the effort for security
maintenance will be proportional to the resolution of only that vulnerability. However, when there
are historical vulnerabilities present for that component, the resolution of the new vulnerability will
be likely complicated: the Security Response and Maintenance teams will have to ensure that none
of the historical vulnerabilities is re-introduced due to the applied fix (let alone the compatibility
issues between older versions of a FOSS component and the fix which is typically provided for a
recent version only).

Some of the variables shown in Table 8 have strong correlations with other variables: for instance,
NumCommits correlates strongly with CountLineCode and NumDevs. Also, to assess the
potential impact of of the popularity of a programming language, we tried to divide the size of the
code base into two different variables: CountLinePopular – the size of the code base written in
popular languages (e. g., Java, C/C++, PHP, JavaScript), and CountLineOther – the size of the code
base implemented in other less popular languages (e. g., Lisp, Scala). Eventually, we understood
that it would introduce the same multi-collinearity problem. Additionally, the numbers of deleted
and added lines of code LinesDeleted and LinesNew correlate strongly with NumCommits and
NumDevs, as well as with CountLineCode. Therefore, we had to further limit the number of
variables for the regression.

For the latter, we had to come up with another metric that would capture the changes to
the source code – LinesChangedRatio. Figure 5 illustrates why we could not use LinesNew

On the Effort for Security Maintenance of FOSS (WEIS’18) :23

Table 8. Descriptive statistics of the collected variables

Statistic

Variable Min 1st Quartile Median Mean 3rd Quartile Max

distributed_effort 5.0 41.8 85.0 880.6 384.3 34752.0
centralized_log_effort 1.7 3.9 6.1 60.2 28.9 1025.2
centralized_netw_effort 2.2 7.1 12.2 110.9 54.4 1025.5
hybrid_log_effort 10.0 65.9 96.0 602.0 335.2 12116.4
hybrid_netw_effort 10.0 66.2 96.0 619.5 348.0 13218.9

AdopterCount 1.0 13.5 59.5 279.1 201.0 9391.0
DebInst 1.0 70.0 1450.0 22034.0 12846.0 175852.0
NumDevs 1.0 16.0 36.0 123.1 105.5 1433.0
NumCommits 18.0 1440.0 4462.0 10410.0 9656.0 174803.0
Years 1.0 7.0 10.0 10.5 14.0 28.0
CountLineCode 3353.0 43406.0 161081.0 564292.0 482120.0 23220236.0
LinesNew 10066.0 287832.0 875808.0 2671514.0 210747.3 80217058.0
LinesDeleted 1205.0 147049.0 562421.0 1741998.0 1449512.0 45837572.0
LinesChangedRatio 1.7 5.28 7.7 16.0 12.83 638.1

and LinesDeleted as factors, as they correlate with each other and with CountLineCode. As
LinesChangedRatio does not have a strong correlation with CountLineCode, it can be used as
an independent variable.

Table 9. Variance inflation factors of the explanatory variables

Variable VIF

Years 1.71
AdopterCount 1.88
DebInst 1.82
NumDevs 1.37
CountLineCode 1.65
LinesChangedRatio 1.33
PrivateVulnReporting 1.63
SecTools 1.53

Variable VIF

SecDesignSpec 1.53
VulnList 1.73
ExternalSecTesing 1.31
MaintSupport 1.85
EaseContrib 1.63
CodeStandards 1.87
CheckedCommits 1.80

Finally, we performed the correlation analysis of the remaining variables in order to determine
whether themulti-collinearity problem remains.We first built the correlationmatrix using Spearman
rank correlations and observed that there were still weak-to-moderate correlations in some of
the variables. However, according to Stevens [83, pp74], the presence of such correlations does
not necessarily affect the regression results. Therefore, we also calculated the variance inflation
factors of each variable (Table 9), which is a widely used measure for assessing the degree of
multi-collinearity of independent variables. According to the rule of thumb proposed by Myers [62,
pp369], these values are acceptable and indicate that the selected explanatory variables do not have
significant cross influences.

6.3 Analysis
To assess the potential individual impact of the above factors that characterize FOSS components
on the security maintenance effort, we employ the OLS method of linear regression [46, Chapter 3].
The results of estimates for each security effort model are given in Table 10.

:24 Dashevskyi et al.

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

CountLineCode vs LinesNew

Total current LOCs (log10 scale)

To
ta

l a
dd

ed
 L

O
C

s
(lo

g1
0

sc
al

e)

104 105 106 107

10
4

10
5

10
6

10
7

10
8

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

LinesNew vs. LinesDeleted

Total added LOCs (log10 scale)

To
ta

l r
em

ov
ed

 L
O

C
s

(lo
g1

0
sc

al
e)

104 105 106 107 108

10
3

10
4

10
5

10
6

10
7

●

●

● ●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

CountLineCode vs LinesDeleted

Total current LOCs (log10 scale)

To
ta

l r
em

ov
ed

 L
O

C
s

(lo
g1

0
sc

al
e)

104 105 106 107

10
3

10
4

10
5

10
6

10
7

●

●

●
●

●
●●

●

●●●● ●
●

●

●

●
●

●

● ●
●

●
● ●●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

● ●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●
●

●
● ● ●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

CountLineCode vs LinesChangedRatio

Total current LOCs (log10 scale)

C
ha

ng
es

 in
 p

ro
je

ct
s

(lo
g1

0
sc

al
e)

104 105 106 107

10
1

10
2

The figure shows that the numbers of added and deleted lines of code (LinesNew and LinesDeleted) could not be used as
independent variables, since they have a strong correlation with each other (as well as with the number of total lines of code
CountLineCode). On the other hand, the number of added and deleted lines of code divided by the total size of a component
(LinesChangedRatio) can be used as an independent predictor. The red triangles additionally show the fraction of the lines of
code written in scripting languages, and the black circles indicate the non-scripting languages.

Fig. 5. The rationale for using the LinesChangedRatio metric

We found that in our models the number of active usersAdopterCount has much larger positive
impact on the security maintenance effort than the number of downloads by regular users DebInst.
As we anticipated, active users may be more likely to find and report vulnerabilities, while user
that simply download and install software packages may be less likely to do it. The impact of
AdopterCount is statistically significant only in Centralized models. The impact of DebInst
is negative, albeit it is rather small and is not significant in any of the models. The latter could
be explained by the intuition that only a major increase of the popularity of a FOSS project could
result in more regular users finding and reporting vulnerabilities, as not every regular user is likely
to have enough knowledge and motivation to discover and report security issues in software that
they are using.

The total number of unique developers NumDevs does not seem to have a major impact. As we
pointed in Section 5, we could not use the number of different developers that make changes to

On the Effort for Security Maintenance of FOSS (WEIS’18) :25

Table 10. Regression Results

VulnList is statistically significant in all models, and has positive impact. AdopterCount and ExternalSecTesting have
positive impact and are significant on all Centralized and Hybridmodels respectively. Years has positive impact in all models,
but is statistically significant only in Hybrid models. CodeStandards has negative impact in all models (significant only in
Hybrid constantmodel). CheckedCommits has positive impact (statistically significant in Centralized constantmodel).

Distributed model Centralized log model Centralized network model

Intercept −2024.92 (−0.76) −159.48 (−1.33) −291.17 (−1.25)
Years 475.38 (1.01) 32.25 (1.52) 60.86 (1.47)
AdopterCount 206.78 (1.02) 23.03 (2.55)* 36.53 (2.07)*
DebInst −11.17 (−0.12) −4.02 (−0.97) −5.35 (−0.67)
NumDevs 61.35 (0.28) 1.25 (0.13) 4.01 (0.21)
CountLineCode −12.87 (−0.06) 0.30 (0.31) 0.41 (0.02)
LinesChangedRatio −192.61 (−0.53) −7.34 (−0.45) −16.10 (−0.51)
PrivateVulnReporting −55.10 (−0.08) 49.89 (1.62) 59.31 (0.99)
ExternalSecTesting 1347.06 (1.55) 53.77 (1.37) 120.18 (1.58)
SecTools 795.82 (1.14) 44.47 (1.42) 89.03 (1.46)
SecDesignSpec −126.44 (−0.19) 0.39 (0.01) −5.71 (−0.10)
VulnList 1872.48 (2.32)* 128.95 (3.56)*** 238.23 (3.38)***
MaintSupport 652.65 (0.88) −23.19 (−0.70) −3.36 (−0.05)
EaseContrib 346.84 (0.52) 9.10 (0.30) 26.55 (0.46)
CodeStandards −731.18 (−0.91) −47.26 (−1.31) −91.27 (−1.29)
CheckedCommits 442.21 (0.49) 70.35 (1.73) . 103.05 (1.30)

N 152 152 152
Multiple R2 0.25 0.41 0.38
Adjusted R2 0.16 0.34 0.31

Note, t -statistics are in parentheses. Signif.codes: . 5%, * 1%, ** 0.01%, *** 0.001%

Hybrid log model Hybrid network model

Intercept −2150.32 (−1.70) . −2153.60 (−1.62)
Years 444.67 (1.98) * 447.88 (1.90) .
AdopterCount 96.89 (1.01) 102.31 (1.02)
DebInst −6.52 (−0.15) −6.61 (−0.14)
NumDevs 28.23 (0.28) 29.68 (0.28)
CountLineCode 35.83 (0.36) 33.79 (0.32)
LinesChangedRatio −52.62 (−0.30) −59.48 (−0.33)
PrivateVulnReporting 56.71 (0.17) 46.58 (0.14)
ExternalSecTesting 967.64 (2.34) * 987.06 (2.27)*
SecTools 454.85 (1.37) 474.23 (1.36)
SecDesignSpec −54.27 (−0.17) −59.71 (−0.18)
VulnList 1214.21 (3.17) ** 1255.50 (3.12)**
MaintSupport 262.23 (0.75) 287.19 (0.78)
EaseContrib 253.44 (0.80) 259.78 (0.78)
CodeStandards −646.82 (−1.69) . −654.40 (−1.62)
CheckedCommits 87.75 (0.49) 105.72 (0.23)

N 152 152
Multiple R2 0.36 0.36
Adjusted R2 0.29 0.29

Note, t -statistics are in parentheses. Signif.codes: . 5%, * 1%, ** 0.01%, *** 0.001%

different parts of a single FOSS component as it was done by previous works [81, 99], therefore,
this could be the reason why we could not capture the impact.

:26 Dashevskyi et al.

Security bugs grow over time [53], which can be explained by the interest of attackers [5], and
the vulnerability discovery rate being highest during the active development phase of a project [54].
Our results show that the variable Years - the age of a project has significant and relatively large
positive impact in Hybrid models, thus supporting these observations.
Zhang [97] and Koru et al. [50] who showed a positive relation between the size of a code

base and the number of defects (which is a component of the effort variable in our models). In
our models, the CountLineCode variable has mostly moderate positive impact, albeit it is not
statistically significant. While this supports the observations in [50, 97], we cannot fully confirm
this fact. On the other hand, the LinesChangedRatio has negative impact in all models (albeit,
not statistically significant). We expected the opposite result, as many works [32, 63, 81] suggest a
positive relation between the number and the frequency of changes and defects. However, these
works assessed the changes with respect to distinct software releases or distinct components of a
single software system, while we are using the cumulative number of changes for all versions of
the FOSS components from our sample as this is the parameter of interest for a developer team
that must maintain the software for over 10 years (see sample distribution in Figure 2).
For the security-related factors, we observed that while ExternalSecTesing may indicate the

high interest of adopters in a FOSS project that helps to improve their security status [93], it
may have a major impact on the security maintenance effort of individual adopters (statistically
significant in Hybrid models). Thus, while external security testing practices serve an important
role of securing FOSS projects and helps their adopters in the long run, it may have consequences
for individual adopters: for example, when all of a sudden a third party publishes a security bug
bounty for a project, and other adopters do not take action by monitoring various sources for new
vulnerabilities, their security maintenance effort may be significantly increased. This intuition is
additionally supported by the fact that theVulnList variable has a major and statistically significant
impact in all our models.
Finally, we observe that CodeStandards has major negative impact on security maintenance,

supporting the intuition that coding standards are helpful for future security maintenance [67] (sta-
tistically significant in Hybrid constant model). Also, according to our results CheckedCommits,
has moderate positive impact (yet, statistically significant only in Centralized constant model).
The latter may be due the fact that while code reviews are helpful for supporting the quality of
a software product in general, they require a lot of resources from FOSS developers, potentially
resulting in errors in specific areas of a project.

Overall, we found the evidence that supports our hypothesis H1 and H3, however, the evidence
for H2 is limited. Our reported R2 values (0.25, 0.41, 0.38, 0.36, 0.36) are acceptable, as our purpose
is to see which variables have the impact. We have not considered some of the variables listed in
Tables 4, 6, and 5, because of the reasons explained in Section 6.2. Thus, we can only explain part
of the variance.

7 DISCUSSION AND IMPLICATIONS
In this study we aimed to bridge the existing knowledge on the economics of software maintenance,
as well as the empirical research on software defects and vulnerabilities in order to investigate
another the important yet overlooked aspect of software economics – the security maintenance of
third-party FOSS components.
We performed an exploratory case study to obtain insights on how the selection and mainte-

nance of FOSS components is handled within the software supply chain of a large international
proprietary software vendor, and identified major challenges of FOSS selection and consumption.
We have also developed a theory of factors impacting the vulnerability resolution process and
investigated their impact on three different security maintenance models, that can be used by

On the Effort for Security Maintenance of FOSS (WEIS’18) :27

software development managers and stakeholders for guiding their decisions on various aspects of
the security maintenance.
Our study has implications for developers, managers and stakeholders, as well as for security

researchers who are interested in software ecosystems that result from combining proprietary and
free software.

7.1 Implications for Practice
We identified that security aspects of a software product are relevant on all stages of its development
lifecycle (the SDL process described in Section 3.1), starting from the Preparation stage when all
the selected third-party components should pass the initial quality gates regulated by the Inbound
component selection process. The development activities end after the Transition phase, where the
entire software product has to pass the internal security certification process. However, the security
concerns do not actually end at that phase, as the software product finally enters the Utilization
phase where it remains for support and maintenance for many years.

This long support period implies that the issue of security maintenance for many older versions
of FOSS components shipped with older versions of the software product is extremely relevant as
well - the importance of security characteristics of FOSS components becomes much more apparent
during the Utilization phase.

While the SDL process dictates that FOSS components should receive the same treatment with
no difference to the in-house coding, this rule is difficult to enforce especially during the Utilization
phase due to the lack of in-depth knowledge about every component by the in-house software
developers, and the large number of integrated components and their versions. Unfortunately,
traditional security testing strategies cannot be easily applied to a set of integrated FOSS components
as soon as the maintenance phase begins: the members of the Security Response and Maintenance
teams must react quickly to new security issues reported for these components that can potentially
affect hundreds of customers.
This suggests that an efficient strategy for securing the software supply chains of proprietary

vendors that integrate FOSS components, and decreasing the costs and security maintenance efforts,
should start from increasing the awareness among the software development teams about the
consequences of their choices of specific FOSS components, as well as the management decisions on
the components that have been already integrated. Also, apart from various development processes
that regulate the selection of components, vendors should constantly monitor various quantitative
and qualitative data about third-party FOSS components from multiple sources, and maintain
software repository where this data can be accessed by all stakeholders.

7.2 Implications for Research
A large body of research concentrated on generic software maintenance, however there was little
focus on the security maintenance. Therefore, we believe that our study will contribute to closing
this gap and encourage other researchers to investigate the security maintenance aspects in more
depth, as well as motivate the industrial software vendors to share their datasets with researchers
to foster more empirical research in this area.

The biggest challenge in applying the results of empirical research in general, as well as empirical
research that aims on studying security vulnerabilities, is the availability of the information that
can be used to for evaluation of various heuristics or methods - the ground truth data. In particular,
choosing the right source of vulnerability information is crucial, as any vulnerability prediction
approach highly depends on the accuracy and completeness of the information in these sources.
For instance, Massacci and Nguyen [54] addressed the question of selecting the right source of
ground truth for vulnerability analysis. The authors [54] show that different vulnerability features

:28 Dashevskyi et al.

are often scattered across vulnerability databases and discuss problems that are present in these
sources. Additionally, the authors provide a study on Mozilla Firefox vulnerabilities: their example
shows that if a vulnerability prediction approach is using only one source of vulnerability data
(MFSA), it would actually miss an important number of vulnerabilities that are present in other
sources such as the NVD. Of course, the same should be true also for the cases when only the NVD
is used as the ground truth source for predicting vulnerabilities.

As a proxy for security maintenance effort of consumed FOSS components we used the combina-
tion of the number of products using these components, and the number of known vulnerabilities
in them. As the summary of our findings, the main factors that influence the security maintenance
effort whose are its age, size, and popularity – thus, we confirm several known results in the area
of security effort, however, we also show that these metrics are relevant for the variety of software
components rather than for different parts of a single software system as in [81] and [99].

7.3 Limitations and Threats to Validity
The construct validity might be affected by errors in the data collection process, as well as the accuracy
of data in the data sources that we used. To combat the first threat, we carefully checked the collected
data, removed the duplicates and performed manual spot checks. The threat related to the accuracy
of the data sources should be minimal, as we used the same data sources that the developers of our
industrial partner are typically using.
The internal validity might suffer from wrong interpretation of the results and the choice of the

dependent variable. We could not measure the direct security maintenance effort (e.g., working
hours of developers) as it is not separable from the regular maintenance, and it could not be
separated by distinct FOSS components. Therefore, we had to choose a proxy variable for the
security maintenance effort that consists of the number of publicly known vulnerabilities in a FOSS
component and the number of usages of these components in the internal software applications.
While this approximation may lead to a potential threat to validity, we selected this dependent
variable as being relevant to the security maintenance effort based on our discussions with the
developers and researchers of our industrial partner (being also limited on the data that is available
to the developers of our industrial partner).

To minimize the threats due to potential lack of generalizability and potential over-fitting of the
results, we had to limit the number of independent variables that we considered for regression
analysis. Therefore, our conclusions are based on the analysis of a subset of factors that we initially
identified. Moreover, as we were deliberately using only the high-level information that is available
to the developers of our industrial partner, there could be a lack of causation between the factors
that we assessed and our measure of the effort. Still, our findings are supported by the existing
literature on software defect and vulnerability prediction, which lets us to assume that this threat
is minimized.
The external validity might suffer from the lack of generalizability. The sample of FOSS projects

that we considered is relevant for our industrial partner, which may not be the case for other
software vendors. Still, the majority of FOSS components correspond to the Java ecosystem, and
Java is one of the most popular programming languages (according to TIOBE15 index). This suggests
that the study is likely relevant for other software vendors as well.

8 CONCLUSIONS
In this paper we have developed a theory of factors impacting the vulnerability resolution process
and investigated their impact on several security maintenance models for large software vendors

15http://www.tiobe.com/tiobe-index/

On the Effort for Security Maintenance of FOSS (WEIS’18) :29

that have extensive consumption of FOSS components. We have instantiated several security effort
models – Centralized, Distributed, and Hybrid, and collected variables that represent factors
impacting these models. We have collected data on these variables from 152 FOSS components
currently consumed by software products of our industrial partner, and analyzed their statistical
significance for these models.
As a proxy for security maintenance effort of consumed FOSS components we used the com-

bination of the number of products that rely upon these components, and the number of known
vulnerabilities in them. As the summary of our findings, the main factors that influence the security
maintenance effort are the popularity (namely, the number of adopters) of a FOSS component,
its age, and several security-related factors: external security testing of a component by other
companies or adopters, and the availability of the information about known security vulnerabilities
in a project. We also observed that adopters should investigate whether coding guidelines are
enforced within FOSS projects, and whether there exist code reviews practices, as these two factors
also mat have impact on security maintenance.
While our study was performed at a single software vendor that adopts FOSS components, we

believe that the results of this study can be generalized to other adopters as well. This is due to
the fact that most of the theoretical development and measures are not adopter-specific but rather
FOSS-specific. As a future work we plan collecting a wider sample of FOSS projects, assessing other
explanatory variables and investigating our models further. Using the data for prediction of the
effort is also a promising direction for the future work.

REFERENCES
[1] M. Aberdour. Achieving quality in open-source software. IEEE Software, 24(1):58–64, 2007. 9, 15, 17
[2] Bram Adams, Ryan Kavanagh, Ahmed E. Hassan, and Daniel M. German. An empirical study of integration activities

in distributions of open source software. Empirical Software Engineering, 21(3):960–1001, 2016. 3
[3] Norita Ahmad and Phillip A Laplante. A systematic approach to evaluating open source software. Strategic Adoption

of Technological Innovations, page 50, 2013. 10
[4] Allan J. Albrecht and John E. Gaffney. Software function, source lines of code, and development effort prediction: A

software science validation. IEEE Transactions on Software Engineering, SE-9(6):639–648, 1983. 17
[5] Omar Alhazmi, Yashwant Malaiya, and Indrajit Ray. Security vulnerabilities in software systems: A quantitative

perspective. In Data and Applications Security XIX, pages 281–294. Springer, 2005. 12, 26
[6] Prasanth Anbalagan and Mladen Vouk. On predicting the time taken to correct bug reports in open source projects. In

Proceedings of International Conference on Software Maintenance (ICSM’09), 2009. 10
[7] Claudio Agostino Ardagna, Ernesto Damiani, and Fulvio Frati. Focse: an owa-based evaluation framework for os

adoption in critical environments. In Open Source Development, Adoption and Innovation, pages 3–16. Springer, 2007.
10, 16

[8] Brad Arkin, Scott Stender, and Gary McGraw. Software penetration testing. IEEE Security & Privacy, 3(1):84–87, 2005.
13, 17

[9] Ashish Arora, Ramayya Krishnan, Rahul Telang, and Yubao Yang. An empirical analysis of software vendors’ patch
release behavior: impact of vulnerability disclosure. Information Systems Research, 21(1):115–132, 2010. 3

[10] Lerina Aversano and Maria Tortorella. Evaluating the quality of Free/Open Source systems: A case study. In Proceedings
of 12th International Conference on Enterprise Information Systems (ICEIS’10), 2010. 10

[11] Claudia Ayala, Øyvind Hauge, Reidar Conradi, Xavier Franch, Jingyue Li, and Ketil Sandanger Velle. Challenges of the
open source component marketplace in the industry. In Proceedings of IFIP International Conference on Open Source
Systems (OSS’09), 2009. 3, 10, 12

[12] Ruediger Bachmann and Achim D. Brucker. Developing secure software: A holistic approach to security testing.
Datenschutz und Datensicherheit, 38(4):257–261, 2014. 5

[13] Rajiv D. Banker, Srikant M. Datar, and Chris F. Kemerer. A model to evaluate variables impacting the productivity of
software maintenance projects. Management Science, 37(1):1–18, 1991. 9, 10, 11, 16, 17, 19

[14] Rajiv D Banker, Srikant M Datar, Chris F Kemerer, and Dani Zweig. Software complexity and maintenance costs.
Communications of the ACM, 36(11):81–95, 1993. 9, 10, 11, 12

[15] Rajiv D. Banker and Sandra A. Slaughter. A field study of scale economies in software maintenance. Management
Science, 43(12):1709–1725, 1997. 11, 12

:30 Dashevskyi et al.

[16] Karl Beecher, Andrea Capiluppi, and Cornelia Boldyreff. Identifying exogenous drivers and evolutionary stages in
FLOSS projects. Journal of Systems and Software, 82(5):739–750, 2009. 13, 16

[17] Robert M. Bell, Thomas J. Ostrand, and Elaine J. Weyuker. The limited impact of individual developer data on software
defect prediction. Empirical Software Engineering, 18(3):478–505, 2013. 12, 13, 14

[18] Black Duck Software. The tenth annual future of open source survey. https://www.blackducksoftware.com/
2016-future-of-open-source, 2016. Last accessed 04.07.2017. 1

[19] Achim D. Brucker and Uwe Sodan. Deploying static application security testing on a large scale. Datenschutz und
Datensicherheit, pages 91–101, 2014. 1, 5

[20] Andrea Capiluppi. Models for the evolution of os projects. In Proceedings of International Conference on Software
Maintenance (ICSM’03), pages 65–74, Los Alamitos, CA, USA, 2003. IEEE Computer Society. 13, 16

[21] Eugenio Capra, Chiara Francalanci, and Francesco Merlo. The economics of open source software: an empirical
analysis of maintenance costs. In Proceedings of International Conference on Software Maintenance (ICSM’07), pages
395–404. IEEE, 2007. 9, 11

[22] Hasan Cavusoglu, Huseyin Cavusoglu, and Jun Zhang. Security patch management: Share the burden or share the
damage? Management Science, 54(4):657–670, 2008. 3, 11

[23] Taizan Chan, Siu Leung Chung, and Teck Hua Ho. An economic model to estimate software rewriting and replacement
times. IEEE Transactions on Software Engineering, 22(8):580–598, 1996. 9, 11

[24] Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and Vitaly Shmatikov. Inputs of coma: Static
detection of denial-of-service vulnerabilities. In Proceedings of 22nd IEEE Computer Security Foundations Symposium
(CSF’09), 2009. 9

[25] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security & Privacy, 2(6):76–79, 2004. 13, 17
[26] Steve Christey. Unforgivable vulnerabilities. Black Hat Briefings, 2007. 13, 17
[27] Kevin Crowston, James Howison, and Hala Annabi. Information systems success in free and open source software

development: Theory and measures. Software Process: Improvement and Practice, 11(2):123–148, 2006. 12, 15
[28] Stanislav Dashevskyi, Achim D Brucker, and Fabio Massacci. On the security cost of using a free and open source

component in a proprietary product. In Proceedings of the 2016 Engineering Secure Software and Systems Conference
(ESSoS’16), pages 190–206. Springer, 2016. 1

[29] Julius Davies, Daniel M. German, Michael W. Godfrey, and Abram Hindle. Software bertillonage. Empirical Software
Engineering, 18(6):1195–1237, 2013. 8

[30] Brian Fitzgerald. The transformation of open source software. MIS Quarterly-Management Information Systems,
30(3):587–598, 2006. 3

[31] Richard K. Fjeldstad and William T. Hamlen. Application program maintenance study: Report to our respondents.
Tutorial on Software Maintenance, IEEE Computer Society Press, pages 13–30, 1982. 11, 12

[32] Michael Gegick, Laurie Williams, Jason Osborne, and Mladen Vouk. Prioritizing software security fortification through
code-level metrics. In Proceedings of the 4th Workshop on Quality of Protection (QoP’08), 2008. 13, 16, 26

[33] Barney G. Glaser and Anselm L. Strauss. Grounded theory. Strategien qualitativer Forschung. Bern: Huber, 1998. 4
[34] Ron Goldman and Richard P. Gabriel. Innovation happens elsewhere: Open source as business strategy. Morgan Kaufmann,

2005. 7
[35] Robert Wayne Gregory, Mark Keil, Jan Muntermann, and Magnus Mähring. Paradoxes and the nature of ambidexterity

in IT transformation programs. Information Systems Research, 26(1):57–80, 2015. 4
[36] Greg Guest, Kathleen M. MacQueen, and Emily E. Namey. Applied thematic analysis. Sage, 2011. 4
[37] Mohanad Halaweh. Using grounded theory as a method for system requirements analysis. Journal of Information

Systems and Technology Management, 9(1):23–38, 2012. 4
[38] Tracy Hall, Sarah Beecham, and David Bowes. A systematic literature review on fault prediction performance in

software engineering. IEEE Transactions on Software Engineering, 38(6):1276–1304, 2012. 14
[39] Marit Hansen, Kristian Köhntopp, and Andreas Pfitzmann. The Open Source approach – opportunities and limitations

with respect to security and privacy. Computers & Security, 21(5):461–471, 2002. 1
[40] Jaap-Henk Hoepman and Bart Jacobs. Increased security through open source. Communications of the ACM, 50(1):79–83,

2007. 1
[41] Robert R. Hoffman, Nigel R. Shadbolt, Mike A. Burton, and Gary Klein. Eliciting knowledge from experts: A method-

ological analysis. Organizational behavior and human decision processes, 62(2):129–158, 1995. 4
[42] Julian P. Hoppner. The GPL prevails: An analysis of the first-ever court decision on the validity and effectively of the

GPL. A Journal of Law, Technology & Society (SCRIPTed), 1:628, 2004. 2
[43] Martin Höst and Alma Oručević-Alagić. A systematic review of research on open source software in commercial

software product development. Information and Software Technology, 53(6):616–624, 2011. 1
[44] Michael Howard and Steve Lipner. The Security Development Lifecycle: SDL: A Process for Developing Demonstrably

More Secure Software. Microsoft Press, 2006. 5

https://www.blackducksoftware.com/2016-future-of-open-source
https://www.blackducksoftware.com/2016-future-of-open-source

On the Effort for Security Maintenance of FOSS (WEIS’18) :31

[45] Hennie Huijgens, Arie van Deursen, Leandro L. Minku, and Chris Lokan. Effort and cost in software engineering: A
comparison of two industrial data sets. In Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering (EASE’17), 2017. 9, 17

[46] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning, volume 6.
Springer, 2013. 23

[47] Russell L. Jones and Abhinav Rastogi. Secure coding: building security into the software development life cycle.
Information Systems Security, 13(5):29–39, 2004. 13, 17

[48] Magne Jorgensen and Martin Shepperd. A systematic review of software development cost estimation studies. IEEE
Transactions on Software Engineering, 33(1):33–53, 2007. 17

[49] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus, Aloka Sinha, and Naoyasu Ubayashi. A
large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software Engineering, 39(6):757–773,
2013. 13, 16

[50] A. Gunes Koru, Dongsong Zhang, Khaled El Emam, and Hongfang Liu. An investigation into the functional form of
the size-defect relationship for software modules. IEEE Transactions on Software Engineering, 35(2):293–304, 2009. 13,
16, 26

[51] Daoyuan Li, Li Li, Dongsun Kim, Tegawendé F Bissyandé, David Lo, and Yves Le Traon. Watch out for this commit! a
study of influential software changes. arXiv preprint arXiv:1606.03266, 2016. 17

[52] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd Petter N Slyngstad, and Maurizio Morisio. Devel-
opment with off-the-shelf components: 10 facts. IEEE Software Journal, 26(2):80, 2009. 1, 7

[53] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai. Have things changed now?:
an empirical study of bug characteristics in modern open source software. In Proceedings of the 1st workshop on
Architectural and system support for improving software dependability (ASID’06), 2006. 26

[54] Fabio Massacci and Viet Hung Nguyen. Which is the right source for vulnerability studies?: an empirical analysis on
Mozilla Firefox. In Proceedings of the International ACM Workshop on Security Measurement and Metrics (METRISEC’10),
2010. 26, 27

[55] Fabio Massacci and Viet Hung Nguyen. An empirical methodology to evaluate vulnerability discovery models. IEEE
Transactions on Software Engineering, 40(12):1147–1162, 2014. 12, 14

[56] Philip Mayer and Andreas Schroeder. Cross-language code analysis and refactoring. In Proceedings of 12th IEEE
Working Conference on Source Code Analysis and Manipulation (SCAM’12), pages 94–103, 2012. 15

[57] Gary McGraw. Software security: building security in, volume 1. Addison-Wesley Professional, 2006. 13, 17
[58] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. An empirical study of the impact of modern

code review practices on software quality. Empirical Software Engineering, pages 1–44, 2015. 13, 17
[59] Janne Merilinna and Mari Matinlassi. State of the art and practice of OpenSource component integration. In Proceedings

of 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA’06), 2006. 10
[60] Mark Merkow. Risk Analysis and Management for the Software Supply Chain, 2013. 1
[61] Charlie Miller. The legitimate vulnerability market: Inside the secretive world of 0-day exploit sales. In Proceedings of

6th Annual Workshop on the Economics of Information Security (WEIS’07), 2007. 17
[62] Raymond H. Myers. Classical and modern regression with applications. Duxbury Press, Pacific Grove, 2000. 23
[63] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to predict system defect density. In

Proceedings of the 27th International Conference on Software Engineering (ICSE’05), 2005. 13, 14, 15, 16, 26
[64] Viet Hung Nguyen, Stanislav Dashevskyi, and Fabio Massacci. An automatic method for assessing the versions affected

by a vulnerability. Empirical Software Engineering, 21(6):2268–2297, 2016. 17
[65] Viet Hung Nguyen and Le Minh Sang Tran. Predicting vulnerable software components with dependency graphs. In

Proceedings of the International ACM Workshop on Security Measurement and Metrics (METRISEC’10), 2010. 14
[66] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Predicting the location and number of faults in large

software systems. IEEE Transactions on Software Engineering, 31(4):340–355, 2005. 12, 13, 14
[67] Lotfi Ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, and Achim D. Brucker. Time for addressing software

security issues: Prediction models and impacting factors. Data Science and Engineering, 2(2):107–124, 2017. 10, 15, 16,
17, 19, 26

[68] Andy Ozment. Software security growth modeling: Examining vulnerabilities with reliability growth models. In
Quality of Protection: Security Measurements and Metrics, pages 25–36. Springer, 2006. 12

[69] Andy Ozment and Stuart E. Schechter. Milk or wine: Does software security improve with age? In Proceedings of the
15th USENIX Security Symposium, 2006. 16

[70] Gregor Polančič, Romana Vajde Horvat, and Tomislav Rozman. Comparative assessment of open source software
using easy accessible data. In Proceedings of 26th International Conference on Information Technology Interfaces (ITI’04),
2004. 15

:32 Dashevskyi et al.

[71] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Software fault prediction metrics: A systematic
literature review. Information and Software Technology, 55(8):1397–1418, 2013. 14

[72] Eric Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy, 12(3):23–49, 1999. 12, 15, 17
[73] Eric Rescorla. Is finding security holes a good idea? IEEE Security & Privacy, 3(1):14–19, 2005. 4, 11
[74] Gregorio Robles, Jesús M. González-Barahona, Carlos Cervigón, Andrea Capiluppi, and Daniel Izquierdo-Cortázar.

Estimating development effort in free/open source software projects by mining software repositories: A case study of
openstack. In Proceedings of the 8th International Working Conference on Mining Software Repositories MSR(’11), 2014. 10

[75] Michel Ruffin and Christof Ebert. Using open source software in product development: A primer. IEEE Software,
21(1):82–86, 2004. 3, 10

[76] Hitesh Sajnani, Vaibhav Saini, Joel Ossher, and Cristina Videira Lopes. Is popularity a measure of quality? an analysis of
Maven components. In Proceedings of IEEE International Conference on Software Maintenance and Evolution (ICSME’14),
2014. 10, 12, 15

[77] Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis, and Ioannis Stamelos. The SQO-OSS quality model: measure-
ment based open source software evaluation. In Proceedings of IFIP International Conference on Open Source Systems
(OSS’08), 2008. 10

[78] Riccardo Scandariato, JamesWalden, AramHovsepyan, andWouter Joosen. Predicting vulnerable software components
via text mining. IEEE Transactions on Software Engineering, 40(10):993–1006, 2014. 13, 14

[79] Guido Schryen. Is open source security a myth? Communications of the ACM, 54(5):130–140, 2011. 1
[80] Robert C. Seacord. Secure coding standards. In Proceedings of the Static Analysis Summit, NIST Special Publication,

2006. 13, 17
[81] Yonghee Shin, AndrewMeneely, LaurieWilliams, and Jason Osborne. Evaluating complexity, code churn, and developer

activity metrics as indicators of software vulnerabilities. IEEE Transactions on Software Engineering, 37(6):772–787,
2011. 13, 14, 15, 16, 22, 25, 26, 28

[82] Yonghee Shin and Laurie Williams. An empirical model to predict security vulnerabilities using code complexity
metrics. In Proceedings of the 2nd International Symposium on Empirical Software Engineering and Measurement
(ESEM’08), 2008. 14

[83] James P. Stevens. Applied multivariate statistics for the social sciences. Routledge, 2012. 23
[84] Klaas-Jan Stol and Muhammad Ali Babar. Challenges in using open source software in product development: a review

of the literature. In Proceedings of the 3rd International Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development (FLOSS’10), 2010. 3, 10

[85] Anselm Strauss and Juliet Corbin. Basics of qualitative research, volume 15. Newbury Park, CA: Sage, 1990. 4
[86] Gregory Tassey. The economic impacts of inadequate infrastructure for software testing. National Institute of Standards

and Technology, RTI Project, 7007(011), 2002. 11
[87] Ferdian Thung. Automatic prediction of bug fixing effort measured by code churn size. In Proceedings of the 5th

International Workshop on Software Mining, 2016. 10
[88] Amrit Tiwana. Does interfirm modularity complement ignorance? a field study of software outsourcing alliances.

Strategic Management Journal, 29(11):1241–1252, 2008. 2, 10
[89] Kris Ven and Herwig Mannaert. Challenges and strategies in the use of open source software by independent software

vendors. Information and Software Technology, 50(9):991–1002, 2008. 3
[90] James Walden and Maureen Doyle. SAVI: Static-analysis vulnerability indicator. IEEE Security & Privacy, 10(3):32–39,

2012. 13, 14
[91] James Walden, Jeffrey Stuckman, and Riccardo Scandariato. Predicting vulnerable components: Software metrics vs

text mining. In Proceedings of the 25th IEEE International Symposium on Software Reliability Engineering (ISSRE’14),
2014. 13, 14

[92] David A Wheeler. How to evaluate open source software/free software (OSS/FS) programs. Whitepaper. Accessed on
04.07.2017, 2011. 13, 17

[93] David A Wheeler and Samir Khakimov. Open source software projects needing security investments. Whitepaper.
Accessed on 04.07.2017, 2015. 10, 15, 17, 21, 26

[94] Robert K. Yin. Case study research: Design and methods. Sage, 2013. 4, 5
[95] Liguo Yu. Indirectly predicting the maintenance effort of open-source software. Journal of Software Maintenance and

Evolution: Research and Practice, 18(5):311–332, 2006. 9, 10, 16
[96] Feng Zhang, Audris Mockus, Ying Zou, Foutse Khomh, and Ahmed E Hassan. How does context affect the distribution

of software maintainability metrics? In Proceedings of International Conference on Software Maintenance (ICSM’13),
2013. 10, 12, 13, 15, 16

[97] Hongyu Zhang. An investigation of the relationships between lines of code and defects. In Proceedings of International
Conference on Software Maintenance (ICSM’09), 2009. 13, 16, 26

On the Effort for Security Maintenance of FOSS (WEIS’18) :33

[98] Luyin Zhao and Sebastian Elbaum. Quality assurance under the open source development model. Journal of Systems
and Software, 66(1):65–75, 2003. 17

[99] Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Searching for a needle in a haystack: Predicting
security vulnerabilities for windows vista. In Proceedings of the 3rd International Conference on Software Testing
Verification and Validation (ICST’10), 2010. 13, 15, 16, 25, 28

	Abstract
	1 Introduction
	2 FOSS and Third-Party Components
	2.1 What Makes FOSS Special?

	3 Theory Building From a Case Study at a Large International Software Vendor
	3.1 FOSS Adoption as Part of the Secure Software Development Lifecycle
	3.2 FOSS Components Approval Processes
	3.3 FOSS Maintenance And Response

	4 Theory Consolidation from Research
	4.1 Selection and Evaluation of FOSS
	4.2 The Economic Impact of Security Maintenance
	4.3 Factors of FOSS projects and Security Maintenance Effort

	5 A Model of Business And Technical Drivers for FOSS Security Maintenance
	5.1 A Conceptual Model of Business And Technical Drivers
	5.2 The Effort Variable For FOSS Maintenance

	6 Empirical Data Analysis
	6.1 Data Collection
	6.2 Demographics
	6.3 Analysis

	7 Discussion and Implications
	7.1 Implications for Practice
	7.2 Implications for Research
	7.3 Limitations and Threats to Validity

	8 Conclusions
	References

