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For open source software, security attention frequently focuses on the discovery of vulnerabilities prior to

release. The large number of diverse people who view the source code may find vulnerabilities before the

software product is release. Therefore, open source software has the potential to be more secure than closed

source software. Unfortunately, for vulnerabilities found after release, the benefits of many having viewers

may now work against open source software security. Attackers may be more likely to exploit discovered

vulnerabilities since they too can view the source code and can use it to learn the details of a weakness

and how best to exploit it. I examine the diffusion of vulnerabilities in open source software compared with

closed source software. Empirical analysis of two years of security alert data from intrusion detection systems

indicates that open source software vulnerabilities are at greater risk of exploitation, diffuse more rapidly,

and have greater volume of exploitation attempts.
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1. Introduction

The current world economy relies heavily on computerized information systems; security problems

threaten this infrastructure. While earlier attention focused on issues such as system development

(Baskerville 1993, e.g.), researchers increasingly turn to managerial action (Straub and Welke

1998, Lohmeyer et al. 2002), organizational context (Dhillon and Backhouse 2001), and economic

incentives (Gordon and Loeb 2002, 2006, Gordon et al. 2010) to understand the process of security

compromise (Ransbotham and Mitra 2009). From any perspective, security remains important.

While there are many paths to insecurity, vulnerabilities in software are an unfortunately com-

mon problem. Research to reduce the effect of software vulnerabilities focuses on four main stages.

First, before software is released, a great deal of research emphasizes improved development prac-
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tices to reduce vulnerabilities. Second, after the software is released, incentive structures for vul-

nerability discovery efforts continue to be proposed and debated (e.g. Ransbotham et al. 2010,

Kannan and Telang 2005, Schechter 2004, Ozment 2004, Bohme 2006). Third, once a vulnerability

is discovered, there are important policy decisions about the best way to disclose the vulnerabil-

ity to vendors, information systems professionals and the public (e.g. Arora et al. 2004b,a, Choi

et al. 2005, Cavusoglu et al. 2005b, Li and Rao 2007, Cavusoglu et al. 2007). Finally, once vendors

develop patches, trade-offs remain about the optimal patching policy (e.g. August and Tunca 2008,

Arora et al. 2006, Cavusoglu et al. 2008).

One important choice software developers make is the availability of the source code. Developers

can choose two basic options for software source code visibility— closed source or open source. In

closed source software, the developers do not make the source code publicly visible; in open source

software, the source code is publicly available for viewing. Many proponents of open source software

believe that by making the source code available, the software product can be more secure. They

reason that the more people who view the code, the more likely that vulnerabilities are discovered

before the software is released. This is summarized and often repeated as “given enough eyeballs,

all bugs are shallow” (Raymond 1997).

However, despite development and testing efforts, not all vulnerabilities in software will be found

before release. Instead, some will inevitably be found afterwards. While considerable research and

commentary has focused on the pre-release stage benefits of open source software, the post-release

stage is important as well. Once a vulnerability is found in released software, the same mechanism

which increases security before release may make security worse after release— potential attackers

have access to view the source code containing the vulnerability. Because potential attackers can

view the code, their effort required to design code to exploit the vulnerability is reduced.

In this research, I investigate exploitation attempts on vulnerabilities in open source and closed

source software products. I use an empirical analysis of log data from intrusion detection systems

to examine the risk, diffusion and volume of exploitation attempts. The log data spans two years
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(400 million alerts) and is generated by 960 clients of a managed security service provider. Rela-

tive to vulnerabilities in closed source software products, my analysis indicates that vulnerabilities

in open source software products (a) have a greater risk of exploitation, (b) diffuse earlier and

wider, and (c) have greater overall volume of exploitation attempts. My research contributes to our

understanding of software vulnerabilities in three ways. First, I consider the effects of wide view-

ing of source code in the vulnerability exploitation phase: while analysis of the pre-release stage

of open source software is common, the exploitation stage receives much less attention. Second,

I contribute one of the few large scale empirical examinations of software vulnerabilities: while

analytical models are common, there are relatively few empirical analyses using real data across

multiple organizations (e.g. Ransbotham et al. 2010, Ransbotham and Mitra 2009). Empirical stud-

ies so far focus predominantly on the important topic of vulnerability creation during development

(Meneely and Williams 2009, Meneely et al. 2008), not the post-release exploitation process. Third,

the theoretical insights from the analysis provide important guidance for disclosure policy makers.

The rest of the paper is organized as follows. Section 2 provides the research context and the

theoretical background for four hypotheses about the diffusion, risk and volume of exploitation

attempts from open source software. Next, Section 3 describes the data and methodology used

to test the hypotheses. Section 4 details the results of the empirical analysis. Finally, Section 5

summarizes the contribution of the study and suggests future research to build on this study.

2. Theoretical Background
2.1. Vulnerability Discovery and Disclosure

While developers try to eliminate security vulnerabilities before software is released, both security

professionals and attackers continue to find vulnerabilities. As an indication, the NVD published

5,632 vulnerabilities in 2008 and 5,733 in 2009. There is little evidence to suggest that developers

can completely eradicate vulnerabilities before release.

Thus, the impact of these inevitable vulnerabilities depends largely on who discovers them first.

If security professionals find vulnerabilities, they typically share this information with other pro-

fessionals through organizations such as CERT. Using various policies (Arora et al. 2004b), these
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organizations attempt to get vulnerabilities corrected and the vulnerability threat reduced. On the

other hand, if attackers find vulnerabilities, they quickly attempt to exploit them for their own

gain.

This high level overview illustrates two key aspects of the vulnerability life-cycle. First, attackers

and defenders have different reward and incentives. Much recent research attention has focused

on ways to evaluate and manipulate incentive structures, particularly for security professionals.

Instead of freely sharing, market mechanisms have been proposed (Schechter 2004, Ozment 2004)

to increase rewards and incentives for responsible disclosure. These market mechanisms may have

inherent weaknesses (such as incentive to leak information, Kannan and Telang 2005) or may

provide a time advantage to defenders (Ransbotham et al. 2010). Second, many different disclosure

policies exist and have been analyzed (e.g. Arora et al. 2004a,b, Choi et al. 2005, Cavusoglu et al.

2005b, Bohme 2006, Li and Rao 2007, Cavusoglu et al. 2007).

Regardless of who discovers the vulnerability or what mechanism is used for discovery, the

discovery starts a research and development (R&D) race between attackers and defenders (Rans-

botham et al. 2010). Attackers pour effort into developing methods and tools for exploiting the

vulnerabilities, and then begin to use and distribute them. Conversely, defenders work to correct

the vulnerability, to inform affected entities, to release updated software and to encourage users

to install updates. Instead of focusing on the pre-release benefits of open source software, my

hypotheses focus on how the public visibility of source code affects this exploitation/defense race.

2.2. Open Source Software

Open source software is widely held to be more secure than closed source software. The core of the

argument is that with open source code, many people have the potential to find and correct an

error. This is summarized as “given enough eyeballs, all bugs are shallow” (Raymond 1997). While

researchers have attempted to quantify and measure this effect (e.g. Schryen and Rich 2010), it

is inherently complex. Software projects differ in complexity, features, scope, and user base; the

number and severity of vulnerabilities may be linked to these differences. Therefore, attributing



Ransbotham: Exploitation Attempts of Open Source Vulnerabilities
Workshop on the Economics of Information Security, 2010 5

the vulnerabilities to the open/closed choice is difficult. Furthermore, recent research suggests that

there may be diminishing returns to increased number of users in the context of software (Rescorla

2005) or other community build artifacts (Constant et al. 1996, Kane and Ransbotham 2009).

Therefore, many closed source projects could already have “enough eyeballs” and open source

projects could have more than enough. In fact, recent empirical research finds limited differences in

vulnerabilities disclosed in each type (Schryen 2010), but also finds some evidence of more frequent

disclosures in open source (Schryen 2009).

Open source software presents two additional challenges to post-release security. First, the open

nature of the source code eliminates any benefits of private disclosure. Private disclosure, if leakage

is avoided (Kannan and Telang 2005), can give defenders some time advantage (Ransbotham and

Mitra 2009). However, because changes to the source code are visible, they are publicly disclosed by

definition, making it “too easy for hackers to figure out how to defeat the security” (Lawton 2002,

p. 19). Even if open source software patches more rapidly than closed source (Arora et al. 2005),

modifications to the source code are already visible. Second, many open source software projects

are themselves used as components of other software products. Even if the vulnerability itself is

corrected, the downstream software products are still at risk until they incorporate the correction

and release a patch. For example, OpenSSL is a widely used open source library used for secure

socket communication. However, after corrections are made in OpenSSL, products that in turn

use OpenSSL must also develop, test, and release their products. While possible in closed source

software (e.g. drivers, libraries), this component nature that is common in open source projects

increases the window of opportunity that attackers have.

2.3. The Risk of Exploitation Attempt

First, open source software may increase the risk of exploitation attempts based on a vulnerability.

Since attackers can view the source code, their effort and time to develop an exploit is reduced for

open source software. Because their effort is reduced, the expected value of exploitation is strictly

increased because of reduced cost. Similarly, because the time is reduced, the expected value is
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increased because of increased probability of exploit success. In general innovation competition,

information and time advantage is important (Bloch and Markowitz 1996, Fudenberg et al. 1983).

In the context of security, the time advantage means that attackers will find fewer systems patched

and defended against the vulnerability. Faced with limited resources, the rational attacker will focus

on opportunities with the highest expected value of exploitation first. Therefore, I hypothesize

that:

Hypothesis 1. A target firm will face a greater risk of exploitation for vulnerabilities in open

source software than for vulnerabilities in closed source software.

2.4. The Diffusion of Exploitation Attempts

Second, like other innovation (Rogers 2003), exploitation knowledge diffuses through the attacker

community. After vulnerabilities are discovered, expert attackers build tools to exploit the vul-

nerability (Ransbotham and Mitra 2009). As these tools diffuse through the attacker community,

more and more firms will experience the exploitation attempt. Then, as the potential targets install

countermeasures, the value of the tool will diminish; new tools based on new vulnerabilities will

offer more reward. Therefore, exploitation attempts will follow the traditional S-curve of technology

diffusion.

To model the diffusion process of attacks, I use the following notation. Let N(t) be the cumulative

number of target firms affected at time t where t is measured from the time a vulnerability is

discovered. Let P be the height of the S-curve, or the maximum number of target firms in the

population affected by the vulnerability (referred to as the penetration of the diffusion process).

Let Th be the time t when half of the target systems are affected by the vulnerability. R is the

slope of the S-curve which is dependent on factors such as the type of vulnerability, complexity

of developing exploits, and the impact of the vulnerability on systems. As such, N(t) is modeled

using the following familiar form of the S-curve.

N(t) =
P

1 + e−R(−t−Th)
(1)
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Similar to the reasoning in Hypothesis 1, I expect that the diffusion of exploitation attempts

based on open source vulnerabilities will occur sooner than exploits based on closed source vulnera-

bilities. The reduced time and effort for attackers to develop exploits translates to earlier diffusion.

Consequently, the S-curve in Equation 1 is shifted to the left for vulnerabilities in open source

software. Therefore, I hypothesize that:

Hypothesis 2. The start of the diffusion of attacks through the population of target firms will

be accelerated for vulnerabilities in open source software as compared with vulnerabilities in closed

source software.

Because of the time advantage, attackers will attempt exploits on a larger number of firms as

well. The rational attacker will only stop when the expected value of the next exploitation attempt

is non-positive. The time advantage means that attackers have longer before potential targets can

implement countermeasures. Consequently, the target population of expected unprotected systems

will be greater, leading to a taller height (P ) of the S-curve for the diffusion process. Therefore, I

hypothesize that:

Hypothesis 3. The diffusion of attacks through the population of target firms will have greater

penetration for vulnerabilities in open source software than for vulnerabilities in closed source soft-

ware.

2.5. Volume of Exploitation Attempts

Finally, another metric to evaluate the relative impact of the open versus closed source choice is

the overall volume of exploitation attempts. Vulnerabilities are typically found by expert attack-

ers; they are then quickly incorporated into automated tools usable by anyone (Ransbotham and

Mitra 2009). While expert discovery will be seen in the risk of first exploitation analysis, tools are

responsible for the volume of exploitation attempts.

Open source code affects tools from both a supply and demand side. First, expert attackers invest

their time and effort into tools that the attacker community will find most valuable. Tool value

comes from increase probability of successful attack. Because the source code is visible, expert
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attackers require less effort and time to create tools; this time reduction increases the probability

of successful attack. Therefore, more tools will be available. Second, adopters of the tools are

similarly rational. They will adopt and spend effort on tools with the greatest expected value.

The compounded result is greater adoption of a greater number of tools; these tools increase the

number of exploitation attempts that a firm will experience. Therefore, I hypothesize that:

Hypothesis 4. A target firm will have more attacks for vulnerabilities in open source software

than for vulnerabilities in closed source software.

3. Data and Methodology

To evaluate these hypotheses, I merge information from three sources: 1) detailed alert log data

from 960 firms using intrusion detection systems managed by a security service provider; 2) detailed

vulnerability data from the National Vulnerability Database (NVD); and 3) manual classification

of the software products associated with each vulnerability.

3.1. Intrusion Detection System Alert Logs

Firms install an intrusion detection system (IDS) to prevent potentially malicious traffic from

entering their network. An IDS monitors incoming traffic and looks for known patterns of sus-

picious traffic. These known patterns are called signatures. When an IDS detects a signature, it

stops the traffic and records an alert in a log. As a result, the IDS provides two main functions.

First, it prevents malicious traffic from entering a network in real-time. Second, the logs provide

the opportunity for later detailed analysis. As a result, IDS logs offer insight into attacker behav-

ior that has been exploited by researchers. Cavusoglu et al. (2005a), Ransbotham et al. (2010),

and Ransbotham and Mitra (2009) present more detail on intrusion detection systems and offer

examples of their prior use in security research.

For the empirical analysis, I use alert logs generated by intrusion detection systems installed at

960 clients of a managed security service provider, SecureWorks. This dataset provides a unique

research opportunity because it contains real alert data (as opposed to data from a research setting)

from a large number of firms with varied infrastructure across many industries. The alert database
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contained over four hundred million alerts generated during 2006 and 2007. My analysis is based

on a summary dataset of the number of alerts generated every day during the two year period of

my analysis, grouped by target firm and individual vulnerability.

3.1.1. National Vulnerabilities Database My second main data source is the National

Vulnerabilities Database (NVD 2008). The NVD consolidates several public vulnerability data

sources such as CERT, Bugtraq, XForce and Secunia. Security exports assess each vulnerability in

the NVD using a Common Vulnerability Scoring System (CVSS) (Mell and Romanosky 2008, Mell

et al. 2006). The CVSS is an open, mature, and well-established (e.g. Frei et al. 2006, Jones 2007,

Kotenko and Stepashkin 2006, Ransbotham et al. 2010) definition of the fundamental character-

istics of a vulnerability. Despite its shortcomings, it is objectively scrutinized by many interested

parties and uniformly applied to all vulnerabilities. Details of the CVSS scoring system used in my

analysis are in Mell and Romanosky (2008). It is important for the analysis that I insure that the

effects I see are due to the open source nature of the software product and not due to characteristics

of the vulnerability itself. The uniform scoring system, along with other data in the NVD, provides

several control variables. Based on the coded vulnerability attributes, the CVSS also generates a

single score to convey the urgency and priority of the vulnerability and provide an indication of

the likely potential damage from the vulnerability. However, instead of using the aggregate score,

I use the individual vulnerability attributes as controls since a summarized score loses the more

detailed information available from the components of the score.

I use the following control variables in my empirical analysis derived from the information avail-

able through the NVD.

Complexity: Once the attacker has access, vulnerabilities require varying degrees of complexity to

exploit; the NVD uses an ordinal scale of low, medium, or high complexity. I code low complexity

as the base level and include two indicator variables, MediumComplexity and HighComplexity.

The complexity score is based on the difficulty of exploitation and not on the difficulty of detection

and deterrence. Attackers can exploit vulnerabilities of low complexity without additional informa-

tion gathering, specialized access, or high skill levels, while vulnerabilities classified as medium or
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high complexity require varying and greater levels of skill, specialized access conditions, possible

social engineering, and specialized situations that can often be deterred by the target firm. Thus,

medium and high complexity vulnerabilities are progressively harder to exploit than low complexity

vulnerabilities.

Signature: I include an indicator variable, Signature, that is set to 1 if a signature was available at

the time that the vulnerability was disclosed to the public, 0 otherwise. The signature represents

an additional method that attackers can use to learn how to exploit a vulnerability.

Impact: The potential impact of the vulnerability would likely affect the diffusion, risk and vol-

ume as attackers may prefer to spend resources on vulnerabilities which have certain categories of

impact. The potential impact of a vulnerability is categorized by experts as affecting the disclosure

of confidential information (impact conf), the integrity of data (impact integrity), or the avail-

ability of system resources (impact avail). For the analysis, I use an indicator variable for each

impact category that is set to 1 if the potential for the specific impact (confidentiality, integrity

and availability) is present, 0 otherwise. A vulnerability can be coded by experts to have multiple

potential impacts.

Type: attackers may find exploitation easier or rewards larger based on the type of flaw. The

NVD classifies vulnerabilities into seven different types based on the specific software flaw that

the vulnerability represents. These are (i) incorrect access privileges (type access), (ii) failure to

handle incorrect input (type input), (iii) shortcomings in the design of software (type design),

(iv) insufficient response to unexpected conditions (type exception), (v) weak configuration of

settings (type config), (vi) errors due to sequencing of events (type race), and (vii) uncategorized

vulnerability types (type other). Separate indicator variables are included for the first four types;

however, there were insufficient configuration and race type vulnerabilities and these were grouped

into the base type.

Patch: I include an indicator variable, Patch, that is set to 1 if a patch was available at the time

the vulnerability was disclosed to the public, 0 otherwise.
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Age: I also include the Age of vulnerability (log transformed) at the time of the analysis, measured

as the number of days since the vulnerability was disclosed.

3.1.2. Manual Classification of Software Products My final data source is a manual

classification of software products. While the NVD database lists software products affected by a

vulnerability, it does not specify if the software products are open or closed source. At the time

of my analysis, the NVD contained vulnerabilities affecting 13,101 distinct software products. I

was able to find definitive information that 3,369 software products (25.72%) were open source.

Similarly, I found that 3,121 products (23.82%) had closed source licenses. I did not find definitive

information about the remaining 6,611 products (50.46%). Despite the large percentage, qualitative

analysis of the unknown licenses indicates that they are not well-known or highly used products.

Some vulnerabilities affect more than one product; if a vulnerability affected a mix of open and

closed source products, I classified the vulnerability based on the code where the vulnerability was

located (if available). For example, a vulnerability in OpenSSL could affect both open and closed

source software that use OpenSSL. In this case, the vulnerability is an “open source” vulnerability

because attackers can see the source code for the vulnerability even if they cannot see the source

code for the closed source products affected. This approach to classification has been used before

but only with a limited set of vendors (Christey and Martin 2007)1. My key focal variable is an

indicator variable, OpenSource, that is set to 1 if the source code for a vulnerability is open source

and 0 otherwise. Subsequent analysis does not include NVD entries without definitive classification.

I match the signatures for each unique vulnerability in the intrusion alert logs with detailed

information in the NVD. The matching is done through a CERT assigned unique ID that links the

databases together. Not all NVD entries link to signatures in the intrusion detection system logs;

conversely, not all signatures in the intrusion detection system link to NVD entries. These links are

particularly sparse for older vulnerabilities. While the links are incomplete, I compiled a sample

of 883 vulnerabilities with matching IDS signatures. Of these, 359 (40.66%) are vulnerabilities in

1 This classification process was difficult and time consuming. No other researcher should have to take the effort to
do a similar classification to build on these results. A project to make this information publicly available is underway.
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Table 1 Sample Descriptive Statistics

Open Source Closed Source
Variable Value Count Percentage Count Percentage
Exploited No 329 91.64% 457 87.21%

Yes 30 8.36% 67 12.79%
Access Required Requires Local 50 13.93% 63 12.02%

Requires Adjacent 3 0.84% 8 1.53%
Network 306 85.24% 453 86.45%

Complexity Low 187 52.09% 245 46.76%
Medium 131 36.49% 225 42.94%
High 41 11.42% 54 10.31%

Authentication Not required 337 93.87% 508 96.95%
Required 22 6.13% 16 3.05%

Confidentiality Impact No 104 28.97% 105 20.04%
Yes 255 71.03% 419 79.96%

Integrity Impact No 103 28.69% 94 17.94%
Yes 256 71.31% 430 82.06%

Availability Impact No 69 19.22% 73 13.93%
Yes 290 80.78% 451 86.07%

Vulnerability Type Access 12 3.34% 34 6.49%
Input 116 32.31% 151 28.82%
Design 63 17.55% 82 15.65%
Exception 48 13.37% 45 8.59%
Environmental 1 0.28% 1 0.19%
Configuration 6 1.67% 7 1.34%
Race 6 1.67% 6 1.15%
Other 6 1.67% 9 1.72%

Patch Available? No 140 39.00% 220 41.98%
Yes 219 61.00% 304 58.02%

Signature Available? No 348 96.94% 380 72.52%
Yes 11 3.06% 144 27.48%

open source software. Table 1 presents descriptive statistics on the vulnerability data for both open

and closed source software products.

4. Results

The sample consists of 883 vulnerabilities with their alert signatures matched to the NVD database

and a known license. In the alert database, attackers attempted to exploit only 97 (11%) of the

883 vulnerabilities during the time period of the study. To evaluate the hypotheses, I analyze three

empirical models—the risk of an exploitation attempt (Section 4.1), the diffusion of exploitation

attempts (Section 4.2), and the volume of exploitation attempts (Section 4.3).
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4.1. Risk of First Exploitation Attempt

I analyze the risk of first exploitation attempt from a vulnerability on a firm through a proportional

hazard model (Cox 1972, Kalbfleisch and Prentice 2002). In the hazard model, the failure event

is the first observed exploitation attempt of a vulnerability. The hazard model integrates informa-

tion for vulnerabilities that were never exploited, incorporates the evolving risk of exploitation,

and handles truncation of observation caused by the end of the study period. The hazard model

estimates the risk, h(t), through the following equation:

h(t) = lim∆t−>0

Pr(t+ ∆t > T > t|T > t)
∆t

(2)

The Cox proportional hazard model consists of two parts: the baseline hazard function describing

how the risk of first exploitation attempt changes over time when all covariates are at the mean level;

and a parameter for each covariate that describes how the baseline hazard changes in response to

explanatory covariates. In the Cox model, the baseline hazard is not affected by the covariates, and

the parameters are assumed to have a multiplicative effect on the baseline hazard. Because firms

have underlying unobserved heterogeneity, I stratify the analysis to help incorporate unobserved

firm specific vulnerability to exploitation attempts. In Equation 3, the baseline hazard, h0(t), for

firm i and vulnerability j is adjusted by both covariates (xi,j) and the firm specific stratification

parameter (νi).

hi,j(t) = h0(t)e(βxi,j+νi) (3)

For this analysis, I construct a data set that contains for each firm and vulnerability combination,

the day of first attempt to exploit the vulnerability (960 firms and 883 vulnerabilities for a total of

847,126 observations). The model considers a firm at risk of exploitation attempt on the date that

the vulnerability was published. Risk ends when either the first exploitation attempt is observed or

upon censoring at the end of the study period (12/31/2007). To evaluate Hypothesis 1, I incorporate

the focal and control variables as explanatory variables in the hazard model.

Table 2 describes the results of the proportional hazard analysis. Model 0 describes the effects

of only the control variables on the risk of exploitation (baseline hazard). Model 1 enters the
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focal indicator variable OpenSource and supports Hypothesis 1. The coefficient of the open source

variable (β12 = 0.259, p < 0.001) indicates that the risk of first attack increases if the underlying

software product is open source. This is consistent with the argument that information available

from the source code makes it easier for attackers to exploit a vulnerability. Similarly, signature

availability increases the risk of first attack (β11 = 1.095, p < 0.001) providing additional evidence

that attackers can also gain information about how to exploit a vulnerability by examining a

signature. It is interesting that high complexity vulnerabilities (β10 = 0.169) are more likely to be

exploited. It is not clear why; perhaps the exclusivity possible by exploiting a complex vulnerability

offsets the additional effort required. More research is needed to understand this finding.

4.2. Diffusion of Attacks

Next, to evaluate Hypothesis 2 and Hypothesis 3, I model the diffusion of exploitation attempts

through the sample of firms (see Ransbotham et al. 2010). For each of the exploited vulnerabilities

and for each day in the research period, I calculated the cumulative number of firms that expe-

rienced exploitation attempts based on that vulnerability until that day and built a panel with

83,806 observations. No observations are included prior to the publish date of the vulnerability.

To examine the impact of open source licensing on the diffusion of attacks, I estimate Equation 1

with covariates using non-linear least squares estimation. In Equation 4 below, penetration (P ),

rate (R) and delay (D) are linear functions of the focal and control variables.

N(t) =
P

1 + e(−Rt−D)
(4)

where

P = βP0 +βP1 OpenSource+ control variables (5)

R= βR0 +βR1 OpenSource+ control variables (6)

D= βD0 +βD1 OpenSource+ control variables (7)

The term RTh in Equation 1 is incorporated in the constant term βD0 in Equation 7. Hypothesis 2

and Hypothesis 3 predict that the coefficients of the OpenSource indicator variable (βP1 and βD1 )

in Equation 5 and Equation 7 are positive and negative, respectively.
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Table 2 Hazard Analysis of Risk of Exploitation of a Vulnerability

Variable Model 0 Model 1
β1 Confidence Impact −0.133∗∗∗ −0.143∗∗∗

(0.027) (0.027)
β2 Integrity Impact 0.074∗ 0.107∗∗∗

(0.031) (0.030)
β3 Availability Impact 0.361∗∗∗ 0.356∗∗∗

(0.034) (0.034)
β4 Vuln: Access −34.994∗∗∗ −41.942∗∗∗

(0.013) (0.014)
β5 Vuln: Input Validation 0.083∗∗∗ 0.062∗

(0.024) (0.024)
β6 Vuln: Design −0.387∗∗∗ −0.411∗∗∗

(0.034) (0.034)
β7 Vuln: Exception −0.011 −0.052

(0.033) (0.032)
β8 Patch −0.022 −0.031

(0.018) (0.018)
β9 Complexity: Medium −0.138∗∗∗ −0.122∗∗∗

(0.023) (0.023)
β10 Complexity: High 0.187∗∗∗ 0.169∗∗∗

(0.025) (0.025)
β11 Signature 0.979∗∗∗ 1.095∗∗∗

(0.020) (0.020)
β12 OpenSource 0.259∗∗∗

(0.019)
Log likelihood −78594.73 −78519.29
Wald χ2 9.86x106 1.41x107

Cox proportional hazard model of 12,661 exploitation
attempts across 847,126 observations of 883 vulnerabili-
ties in 960 firms; robust standard errors in parentheses;
analysis stratified across 960 firms; two-tailed significance
levels: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 3 details the results of the exploitation attempt diffusion using non-linear least-squares

estimation of parameters. Model 0 describes the effects of the control variables only on the overall

penetration (P ), rate of diffusion (R), and delay (D). Model 1 introduces the focal indicator variable

OpenSource. I find support for Hypothesis 2 that attackers attempt exploitation on open source

products earlier (β12 = −13.992, p < 0.001). I also find support for Hypothesis 3 that attackers

attempt exploitation on a larger number of firms for open source software products (β12 = 46.995,

p < 0.001).

The non-linear parameter estimates in Table 3 are not straightforward to interpret. To clar-
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Table 3 Diffusion of Exploitation Attempts through a Sample of Firms

Model 0 Model 1
Variable P R D P R D

β0 Constant 85.388∗∗∗ −0.038∗∗∗ 9.208∗∗∗ 167.409∗∗∗ −0.206∗∗∗ 117.796∗∗∗

(3.139) (0.004) (0.722) (3.697) (0.028) (13.203)
β1 Confidence Impact −17.262∗∗∗ 0.016∗∗∗ −2.463∗∗∗ 86.082∗∗∗ −0.363∗∗∗ 26.190∗∗∗

(2.433) (0.002) (0.388) (3.419) (0.040) (3.014)
β2 Integrity Impact −31.458∗∗∗ −0.027∗∗∗ 1.466∗∗∗ −193.342∗∗∗ −0.620∗∗∗ −9.945∗∗∗

(2.328) (0.002) (0.364) (3.792) (0.067) (1.449)
β3 Availability Impact −49.810∗∗∗ −0.079∗∗∗ −6.166∗∗∗ −112.635∗∗∗ −0.406∗∗∗ −99.260∗∗∗

(3.084) (0.004) (0.621) (3.292) (0.047) (11.023)
β4 Vuln: Access −38.443∗∗∗ −0.037∗∗∗ 3.584∗∗ 6.702 1.545∗∗∗ 26.222∗∗∗

(4.546) (0.003) (1.095) (14.877) (0.001) (1.095)
β5 Vuln: Input Validation 9.002∗∗∗ −0.031∗∗∗ 0.205 65.027∗∗∗ 0.321∗∗∗ −0.590

(1.139) (0.002) (0.193) (1.198) (0.036) (0.335)
β6 Vuln: Design 275.381∗∗∗ 0.106∗∗∗ 2.116∗∗∗ 4.030∗∗ 0.123∗∗∗ 15.300∗∗∗

(4.075) (0.007) (0.261) (1.811) (0.017) (1.638)
β7 Vuln: Exception 7.6e4∗∗∗ 0.110∗∗∗ 5.414 201.462∗∗∗ 0.582∗∗∗ 13.919∗∗∗

(4.0e6) (0.007) (53.274) (4.369) (0.067) (1.459)
β8 Patch 57.854∗∗∗ 0.043∗∗∗ 0.833∗∗∗ 32.821∗∗∗ −0.150∗∗∗ −2.746∗∗∗

(1.130) (0.003) (0.228) (1.117) (0.018) (0.510)
β9 Complexity: Medium 42.489∗∗∗ 0.020∗∗∗ −1.561∗∗∗ 98.721∗∗∗ 0.220∗∗∗ −0.466

(1.402) (0.001) (0.205) (1.488) (0.026) (0.410)
β10 Complexity: High 7.933∗∗∗ −0.026∗∗∗ −1.664∗∗∗ −1.211 −0.462∗∗∗ 1.709∗

(1.398) (0.003) (0.265) (1.349) (0.052) (0.593)
β11 Signature 51.607∗∗∗ 0.001∗∗∗ −0.002 133.025∗∗∗ 1.370∗∗∗ −31.127∗∗∗

(1.187) (0.001) (0.088) (1.437) (0.149) (3.554)
β12 OpenSource 46.995∗∗∗ 0.251∗∗∗ −13.992∗∗∗

(1.261) (0.029) (1.708)

83,806 daily observations of vulnerabilities exploited in at least one of 960 firms. Nonlinear regres-
sion on the cumulative number of affected firms, N(t) = P

1+e(−Rt−D) . Penetration (P ), rate (R),

and delay (D) are modeled as linear functions of the above covariates. Robust standard errors in
parentheses; two-tailed significance levels: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

ify the estimates, Figure 1 graphs the resultant curves at the mean values of the covariates and

illustrates the differences in open source versus closed source software. The figure shows both the

acceleration in diffusion and overall increase in penetration. The graph strongly supports Hypoth-

esis 2 and Hypothesis 3. It illustrates that exploitation attempts on open source software occur

approximately three days sooner and the overall penetration is increased by approximately 50%.

The figure particularly clarifies the parameter estimate for OpenSource. Based on Table 3, the

effect of OpenSource appears to be much larger— 14 days sooner. However, because of differences
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Figure 1 Diffusion of Exploitation Attempts

in the types of vulnerabilities reported for open source and closed source, the increase strictly

due to OpenSource is smaller. This analysis encourages an interesting topic for future research—

there may be underlying theoretical reasons for the differences in types of vulnerabilities reported.

These differences may lead to differences in diffusion patterns. Interestingly, once diffusion starts,

it is rapid with the curves almost vertical; the rate of diffusion of open source products is slightly

greater. Overall, the rapid diffusion underscores the importance of additional time to implement

deterrence measures. Interestingly, the availability of a signature reduces delay (β11 = −31.127,

p < 0.001) and increases penetration (β11 = 133.025, p < 0.001), indicating that attackers can use

signatures in a similar way that open access to source code may be used, reverse engineering a

vulnerability to develop attack tools.

4.3. Volume of Exploitation Attempts

To evaluate Hypothesis 4, I use a two-stage Heckman model to analyze the number of alerts

generated by a vulnerability for a specific firm. I construct a data set that has for each firm

(960 firms) and each vulnerability (883 vulnerabilities), the number of alerts generated on each

day of the research period. The data set is not balanced; I do not include observations prior to

the publication of the vulnerability. Therefore, some vulnerabilities have longer periods for which

data is available, and the total number of observations is 896,407. Also, many vulnerabilities are

never exploited during the study period and ordinary least squares estimation will ignore the

selection bias. The two-stage model incorporates selection bias in the volume of attacks. In the first
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stage, I use a selection model to investigate vulnerability attributes that affect overall likelihood

of exploitation. I control for all vulnerability covariates and further include monthly fixed effects

based on vulnerability publication date to control for possible changes in exploitation propensity

over the two-year sample period. In the second stage, I estimate the number of alerts per day (with

a natural log transformation). In this analysis, I control for all vulnerability covariates (including

log-transformed number of days since vulnerability disclosure). I include monthly fixed effects based

on alert date to control for changes in attack behavior over time and include 960 firm fixed effect

indicators to control for potential differences in a firms inherent risk of attack. In the two models

below, i indexes a firm, k indexes a vulnerability, and Ek = 1 if vulnerability k is ever exploited

in the alert data, 0 otherwise. F 2
i are firm fixed effect dummies, while M 1

k in stage 1 is the month

fixed effects based on the vulnerability publication date, and M 2
t in stage 2 is the month fixed

effect based on the attack date.

Ek = α1 +β1
1OpenSource+β1

2 ln(Agek) +M 1
k + control variables (8)

ln(Vi,k,t) = α2 +β2
1OpenSource+F 2

i +M 2
t + control variables (9)

Table 4 describes the results from the two stage Heckman analysis. In stage 2 (Model 1), the

coefficient of the OpenSource variable is significant and positive (β13 = 0.148, p < 0.001), indicating

an increase in exploitation attempt volume for vulnerabilities in open source software. Thus, the

results support Hypothesis 4. The results from stage 1 (Model 1) provide additional support for

Hypothesis 1, and indicate that open source vulnerabilities have an increased likelihood of exploita-

tion (β13 = 0.072, p < 0.001). Interestingly, the availability of signatures increases the likelihood of

vulnerability exploitation (β11 = 0.832, p < 0.001 in stage 1), providing additional evidence that

attackers learn to exploit a vulnerability by reverse engineering the associated signatures.

Because exploitation attempts are count variables, alternative models such as poisson or negative

binomial could be used. Although unreported, these models are consistent with the Heckman

results; the coefficient for the OpenSource variable is positive in the poisson (β = 0.882, p < 0.001)

and negative binomial (β = 0.611, p < 0.001) models.
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Table 4 Volume of Exploitation Attempts Per Firm

Model 0 Model 1
Variable Stage 1 Stage 2 Stage 1 Stage 2

β0 Constant −0.136∗∗∗ 0.687∗∗∗ −0.115∗∗∗ 0.678∗∗∗

(0.009) (0.023) (0.009) (0.023)
β1 Confidence Impact −0.274∗∗∗ 0.120∗∗∗ −0.270∗∗∗ 0.122∗∗∗

(0.005) (0.004) (0.005) (0.004)
β2 Integrity Impact 0.510∗∗∗ −0.186∗∗∗ 0.505∗∗∗ −0.188∗∗∗

(0.005) (0.005) (0.005) (0.005)
β3 Availability Impact −0.058∗∗∗ −0.001 −0.055∗∗∗ −0.005

(0.005) (0.004) (0.005) (0.004)
β4 Vuln: Access −0.830∗∗∗ 0.242∗∗∗ −0.826∗∗∗ 0.190∗∗∗

(0.009) (0.008) (0.009) (0.003)
β5 Vuln: Input Validation −0.037∗∗∗ 0.131∗∗∗ −0.032∗∗∗ 0.131∗∗∗

(0.004) (0.003) (0.004) (0.027)
β6 Vuln: Design −0.125∗∗∗ −0.092∗∗∗ −0.124∗∗∗ −0.094∗∗∗

(0.005) (0.003) (0.005) (0.003)
β7 Vuln: Exception −0.315∗∗∗ −0.133∗∗∗ 0.320∗∗∗ −0.206∗∗∗

(0.006) (0.004) (0.006) (0.004)
β8 Patch −0.070∗∗∗ −0.031∗∗∗ −0.068∗∗∗ −0.042∗∗∗

(0.003) (0.002) (0.003) (0.002)
β9 Complexity: Medium −0.176∗∗∗ −0.065∗∗∗ −0.177∗∗∗ −0.049∗∗∗

(0.004) (0.003) (0.004) (0.003)
β10 Complexity: High 0.407∗∗∗ −0.115∗∗∗ 0.411∗∗∗ −0.149∗∗∗

(0.005) (0.004) (0.005) (0.004)
β11 Signature 0.843∗∗∗ −0.067∗∗∗ 0.832∗∗∗ −0.001

(0.004) (0.004) (0.004) (0.004)
β12 Age (ln) at Event −0.176∗∗∗ −0.199∗∗∗

(0.004) (0.004)
Monthly Fixed Effects publish alert publish alert

date date date date
Firm Fixed Effects 960 firms 960 firms

β13 OpenSource 0.105∗∗∗ 0.072∗∗∗ 0.148∗∗∗

(0.004) (0.004) (0.003)
Log pseudo-likelihood −1164115 −1163486

Heckman two stage regression; n= 896,407; 473,699 uncensored; 883 vulnerabilities;
robust standard errors in parentheses; two-tailed significance levels: ∗p < 0.05; ∗∗p <
0.01; ∗∗∗p < 0.001
Stage 1: uncensored if exploit attempt for the vulnerability is observed in the sample
Stage 2: natural log of the number of exploitation attempts

5. Conclusion

My theoretical development and empirical results indicate that, compared with closed source soft-

ware, vulnerabilities in open source software: (a) have increased risk of exploitation, (b) diffuse

sooner and with higher total penetration, and (c) increase the volume of exploitation attempts.
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5.1. Exploitation of Vulnerabilities in Open Source Software

While the wide visibility of open source software code may be highly beneficial in eliminating

vulnerabilities before release, this same visibility can be problematic in the exploitation stage. Once

a vulnerability is discovered, attackers and defenders are in an innovation race. Attackers must

develop exploits based on the vulnerability. Defenders, on the other hand, must notify vendors,

correct code, create releases, and convince users to patch systems. The available of source code

makes the attackers task easier by reducing the time to create exploits and enhancing the quality

of those exploits.

From the empirical analysis, I conclude that the exploitation process is accelerated for open

source products. From a diffusion of innovation perspective, the availability of source code reduces

attacker exploitations costs and increases effectiveness. This amplified risk is evident in all three

empirical models. However, it would be incorrect to conclude that open source is strictly worse for

software security. The benefits from open source remain at the pre-release stage. Although these

are difficult to quantify, it is likely that the benefits of open source outweigh the negative effects

in the exploitation stage. Furthermore, security, while important, is not the only consideration in

choice of software development models.

5.2. Reporting of Open Source Vulnerabilities

Given the trade-off between positive and negative aspects of open source software security, it would

be ideal to combine the benefits of pre-release vulnerability discovery in open source products with

the benefits of closed source exploitation reduction. Are there less public vulnerability disclosure

mechanisms for open source products? Even if vulnerabilities could be privately handled initially, a

source code correction would be necessary at some point; by definition, this is public. This situation

is exacerbated by the reuse of open source products. Open source products are frequently used in

other open source (or proprietary) products. Not only must the vulnerability be corrected in the

initial source, it must be propagated through derivative products, released and installed. These

steps give attackers more time, further increasing the expected benefits for the attacker.
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5.3. Limitations and Future Research

This study has several limitations that future research may be able to address.

First, while I observe the exploitation of vulnerabilities, I cannot assess the discovery of vul-

nerabilities. While many believe that the increased number of viewers helps reduce the number of

vulnerabilities in open source software, it is difficult to measure. Fundamentally, it is difficult to

compare any two software products because many attributes (e.g. user base, complexity, feature

set, etc.) are unknown or are difficult to measure. While these limitations continue to exist in

the exploitation stage, they are more important in the discovery stage. In the exploitation stage,

researchers know the total number of discovered vulnerabilities that could be exploited. In the

discovery stage, the total number of undiscovered vulnerabilities is, by definition, unknown. Prior

to release, it is difficult to quantify how many vulnerabilities would be typically expected in a

software product. These inherent uncertainties make direct evaluation of the security benefits of

open source software difficult.

Second, the descriptive statistics indicate that open and closed source products may have dif-

ferences in the types of vulnerabilities found. It may be that some kinds of bugs are more shallow

than others. While few differences have been found in vulnerabilities disclosed in open versus closed

source (Schryen 2010), there may be differences in exploitation. Detailed analysis of vulnerability

characteristics would be of theoretical and practical interest.

Third, while the IDS and NVD data used in this research is detailed, it has several limitations.

IDS data contains a large number of false positives and false negatives. It is noisy and error-prone;

IDS software and signatures are imperfect. Furthermore, the categorization of vulnerabilities in the

NVD database is often subjective.

Fourth, the availability of source may also benefit defenders. For example, the developers of

IDS signatures may find their task easier with the availability of source code. If so, the results of

this study would be stronger since we observe the net effect of source code visibility. It would be

insightful through future research to quantify and distinguish the benefits to defenders.
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Fifth, while open source software is frequently reused as a component, closed source software is

as well. The reuse and associated dependencies described in Section 5.2 may provide an increased

incentive for attackers. Detailed analysis of exploitations based on embedded components would

also be particularly interesting, both theoretically and practically.

Despite these limitations, managerial and policy implications can be gleaned from detailed empir-

ical analysis. Unfortunately, there is little empirical analysis using real, cross-organizational data

despite recognized need (Ransbotham and Mitra 2009, Schechter 2005). Most importantly, this

study has only identified and quantified the effect of open source on the exploitation stage. Clearly,

there are important disclosure policy implications. Future research is needed to propose and eval-

uate alternative disclosure mechanisms cognizant of the effects I find.
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